通过分析基因表达谱构建基因网络

C. Gallo
{"title":"通过分析基因表达谱构建基因网络","authors":"C. Gallo","doi":"10.4018/978-1-5225-2255-3.CH039","DOIUrl":null,"url":null,"abstract":"The possible applications of modeling and simulation in the field of bioinformatics are very extensive, ranging from understanding basic metabolic paths to exploring genetic variability. Experimental results carried out with DNA microarrays allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. In this chapter, the authors examine various methods for analyzing gene expression data, addressing the important topics of (1) selecting the most differentially expressed genes, (2) grouping them by means of their relationships, and (3) classifying samples based on gene expressions.","PeriodicalId":269471,"journal":{"name":"Advanced Methodologies and Technologies in Medicine and Healthcare","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Building Gene Networks by Analyzing Gene Expression Profiles\",\"authors\":\"C. Gallo\",\"doi\":\"10.4018/978-1-5225-2255-3.CH039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possible applications of modeling and simulation in the field of bioinformatics are very extensive, ranging from understanding basic metabolic paths to exploring genetic variability. Experimental results carried out with DNA microarrays allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. In this chapter, the authors examine various methods for analyzing gene expression data, addressing the important topics of (1) selecting the most differentially expressed genes, (2) grouping them by means of their relationships, and (3) classifying samples based on gene expressions.\",\"PeriodicalId\":269471,\"journal\":{\"name\":\"Advanced Methodologies and Technologies in Medicine and Healthcare\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Methodologies and Technologies in Medicine and Healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-2255-3.CH039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Methodologies and Technologies in Medicine and Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-2255-3.CH039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

建模和模拟在生物信息学领域的可能应用非常广泛,从了解基本的代谢途径到探索遗传变异。用DNA微阵列进行的实验结果使研究人员能够在不同的条件和时间内同时测量数千个基因的表达水平。基因表达数据分析的关键步骤是检测具有相似表达模式的基因组。在本章中,作者研究了分析基因表达数据的各种方法,解决了(1)选择差异表达最多的基因,(2)通过它们的关系对它们进行分组,以及(3)基于基因表达对样本进行分类的重要主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building Gene Networks by Analyzing Gene Expression Profiles
The possible applications of modeling and simulation in the field of bioinformatics are very extensive, ranging from understanding basic metabolic paths to exploring genetic variability. Experimental results carried out with DNA microarrays allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. In this chapter, the authors examine various methods for analyzing gene expression data, addressing the important topics of (1) selecting the most differentially expressed genes, (2) grouping them by means of their relationships, and (3) classifying samples based on gene expressions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bioinformatics Building Gene Networks by Analyzing Gene Expression Profiles Concerns and Challenges of Cloud Platforms for Bioinformatics Technology Design and Routes for Tool Appropriation in Medical Practices Use of Technology in Problem-Based Learning in Health Science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1