{"title":"片上系统的变化感知和自修复设计方法","authors":"Jangjoon Lee, Srikar Bhagavatula, K. Roy, B. Jung","doi":"10.1109/LATW.2012.6261233","DOIUrl":null,"url":null,"abstract":"Due to high sensitivity to process, supply, and temperature variations, deep scaled technologies are losing appeal. Analog and mixed-signal circuits have failed to exploit high speed and low noise properties of these technologies due to marginalities, whereas variations in leakage current and delay have made digital design extremely challenging. Consequently, there is an increasing need for a new design methodology that can provide high yield and improved reliability under PVT variations. Among several post-fabrication calibration strategies, self-healing, which is based on real-time sensing and built-in feedback, has generated great interest because of the ability to dynamically adapt to parametric variations. This paper examines current built-in variation-aware and ad-hoc self-healing designs, and discusses the challenges and strategies in developing a coherent self-healing methodology for system-on-chip (SoC) design in deep-scaled CMOS technologies.","PeriodicalId":173735,"journal":{"name":"2012 13th Latin American Test Workshop (LATW)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Variation-aware and self-healing design methodology for a system-on-chip\",\"authors\":\"Jangjoon Lee, Srikar Bhagavatula, K. Roy, B. Jung\",\"doi\":\"10.1109/LATW.2012.6261233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to high sensitivity to process, supply, and temperature variations, deep scaled technologies are losing appeal. Analog and mixed-signal circuits have failed to exploit high speed and low noise properties of these technologies due to marginalities, whereas variations in leakage current and delay have made digital design extremely challenging. Consequently, there is an increasing need for a new design methodology that can provide high yield and improved reliability under PVT variations. Among several post-fabrication calibration strategies, self-healing, which is based on real-time sensing and built-in feedback, has generated great interest because of the ability to dynamically adapt to parametric variations. This paper examines current built-in variation-aware and ad-hoc self-healing designs, and discusses the challenges and strategies in developing a coherent self-healing methodology for system-on-chip (SoC) design in deep-scaled CMOS technologies.\",\"PeriodicalId\":173735,\"journal\":{\"name\":\"2012 13th Latin American Test Workshop (LATW)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 13th Latin American Test Workshop (LATW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATW.2012.6261233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th Latin American Test Workshop (LATW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATW.2012.6261233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variation-aware and self-healing design methodology for a system-on-chip
Due to high sensitivity to process, supply, and temperature variations, deep scaled technologies are losing appeal. Analog and mixed-signal circuits have failed to exploit high speed and low noise properties of these technologies due to marginalities, whereas variations in leakage current and delay have made digital design extremely challenging. Consequently, there is an increasing need for a new design methodology that can provide high yield and improved reliability under PVT variations. Among several post-fabrication calibration strategies, self-healing, which is based on real-time sensing and built-in feedback, has generated great interest because of the ability to dynamically adapt to parametric variations. This paper examines current built-in variation-aware and ad-hoc self-healing designs, and discusses the challenges and strategies in developing a coherent self-healing methodology for system-on-chip (SoC) design in deep-scaled CMOS technologies.