通过数据共享提高无损可逆隐写性能

Jia-Wei Liu, T. Lu, Qiangfu Zhao
{"title":"通过数据共享提高无损可逆隐写性能","authors":"Jia-Wei Liu, T. Lu, Qiangfu Zhao","doi":"10.1109/ICAWST.2017.8256526","DOIUrl":null,"url":null,"abstract":"In recent years, pixel value ordering (PVO)-based information embedding techniques have been broadly applied in reversible steganography. So far, researchers have focused on finding the best predictor value to decrease the image distortion. In practice, the secret data size is the main factor that affects the quality of the restored cover image. Therefore, in this research we introduce a technique to reduce the data size. The technique is based on data sharing in which the sender and the receiver share the same “vocabulary table” (VT). Using this VT, any secret datum (text, image, or sound) can be converted to a list of indices. Encoding this list using another lossless encoding method, we can compress the datum greatly, and thus reduce the distortion caused in the embedding process. Experimental results show that the proposed method outperforms existing PVO techniques. The proposed method can save around 80% of data space for text data, and about 98% of data space for image data.","PeriodicalId":378618,"journal":{"name":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving the performance of lossless reversible steganography via data sharing\",\"authors\":\"Jia-Wei Liu, T. Lu, Qiangfu Zhao\",\"doi\":\"10.1109/ICAWST.2017.8256526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, pixel value ordering (PVO)-based information embedding techniques have been broadly applied in reversible steganography. So far, researchers have focused on finding the best predictor value to decrease the image distortion. In practice, the secret data size is the main factor that affects the quality of the restored cover image. Therefore, in this research we introduce a technique to reduce the data size. The technique is based on data sharing in which the sender and the receiver share the same “vocabulary table” (VT). Using this VT, any secret datum (text, image, or sound) can be converted to a list of indices. Encoding this list using another lossless encoding method, we can compress the datum greatly, and thus reduce the distortion caused in the embedding process. Experimental results show that the proposed method outperforms existing PVO techniques. The proposed method can save around 80% of data space for text data, and about 98% of data space for image data.\",\"PeriodicalId\":378618,\"journal\":{\"name\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2017.8256526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2017.8256526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,基于像素值排序(PVO)的信息嵌入技术在可逆隐写中得到了广泛应用。到目前为止,研究人员一直致力于寻找减少图像失真的最佳预测值。在实际应用中,秘密数据的大小是影响恢复的封面图像质量的主要因素。因此,在本研究中,我们引入了一种减小数据大小的技术。该技术基于数据共享,发送方和接收方共享相同的“词汇表”(VT)。使用此VT,任何机密数据(文本、图像或声音)都可以转换为索引列表。采用另一种无损编码方法对该列表进行编码,可以大大压缩数据,从而减少嵌入过程中产生的失真。实验结果表明,该方法优于现有的PVO技术。该方法可为文本数据节省约80%的数据空间,为图像数据节省约98%的数据空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the performance of lossless reversible steganography via data sharing
In recent years, pixel value ordering (PVO)-based information embedding techniques have been broadly applied in reversible steganography. So far, researchers have focused on finding the best predictor value to decrease the image distortion. In practice, the secret data size is the main factor that affects the quality of the restored cover image. Therefore, in this research we introduce a technique to reduce the data size. The technique is based on data sharing in which the sender and the receiver share the same “vocabulary table” (VT). Using this VT, any secret datum (text, image, or sound) can be converted to a list of indices. Encoding this list using another lossless encoding method, we can compress the datum greatly, and thus reduce the distortion caused in the embedding process. Experimental results show that the proposed method outperforms existing PVO techniques. The proposed method can save around 80% of data space for text data, and about 98% of data space for image data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep convolutional neural network classifier for travel patterns using binary sensors Establishing the application of personal healthcare service system for cancer patients Disaster state information management gis system based on tiled diplay environment Keynote speech I: Big data, non-big data, and algorithms for recognizing the real world data Improving the performance of lossless reversible steganography via data sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1