Tactlets

Daniel Groeger, Martin Feick, A. Withana, Jürgen Steimle
{"title":"Tactlets","authors":"Daniel Groeger, Martin Feick, A. Withana, Jürgen Steimle","doi":"10.1145/3332165.3347937","DOIUrl":null,"url":null,"abstract":"Rapid prototyping of haptic output on 3D objects promises to enable a more widespread use of the tactile channel for ubiquitous, tangible, and wearable computing. Existing prototyping approaches, however, have limited tactile output capabilities, require advanced skills for design and fabrication, or are incompatible with curved object geometries. In this paper, we present a novel digital fabrication approach for printing custom, high-resolution controls for electro-tactile output with integrated touch sensing on interactive objects. It supports curved geometries of everyday objects. We contribute a design tool for modeling, testing, and refining tactile input and output at a high level of abstraction, based on parameterized electro-tactile controls. We further contribute an inventory of 10 parametric Tactlet controls that integrate sensing of user input with real-time electro-tactile feedback. We present two approaches for printing Tactlets on 3D objects, using conductive inkjet printing or FDM 3D printing. Empirical results from a psychophysical study and findings from two practical application cases confirm the functionality and practical feasibility of the Tactlets approach.","PeriodicalId":431403,"journal":{"name":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Tactlets\",\"authors\":\"Daniel Groeger, Martin Feick, A. Withana, Jürgen Steimle\",\"doi\":\"10.1145/3332165.3347937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid prototyping of haptic output on 3D objects promises to enable a more widespread use of the tactile channel for ubiquitous, tangible, and wearable computing. Existing prototyping approaches, however, have limited tactile output capabilities, require advanced skills for design and fabrication, or are incompatible with curved object geometries. In this paper, we present a novel digital fabrication approach for printing custom, high-resolution controls for electro-tactile output with integrated touch sensing on interactive objects. It supports curved geometries of everyday objects. We contribute a design tool for modeling, testing, and refining tactile input and output at a high level of abstraction, based on parameterized electro-tactile controls. We further contribute an inventory of 10 parametric Tactlet controls that integrate sensing of user input with real-time electro-tactile feedback. We present two approaches for printing Tactlets on 3D objects, using conductive inkjet printing or FDM 3D printing. Empirical results from a psychophysical study and findings from two practical application cases confirm the functionality and practical feasibility of the Tactlets approach.\",\"PeriodicalId\":431403,\"journal\":{\"name\":\"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3332165.3347937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3332165.3347937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tactlets
Rapid prototyping of haptic output on 3D objects promises to enable a more widespread use of the tactile channel for ubiquitous, tangible, and wearable computing. Existing prototyping approaches, however, have limited tactile output capabilities, require advanced skills for design and fabrication, or are incompatible with curved object geometries. In this paper, we present a novel digital fabrication approach for printing custom, high-resolution controls for electro-tactile output with integrated touch sensing on interactive objects. It supports curved geometries of everyday objects. We contribute a design tool for modeling, testing, and refining tactile input and output at a high level of abstraction, based on parameterized electro-tactile controls. We further contribute an inventory of 10 parametric Tactlet controls that integrate sensing of user input with real-time electro-tactile feedback. We present two approaches for printing Tactlets on 3D objects, using conductive inkjet printing or FDM 3D printing. Empirical results from a psychophysical study and findings from two practical application cases confirm the functionality and practical feasibility of the Tactlets approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LightAnchors Session details: Session 7B: Haptics TipText: Eyes-Free Text Entry on a Fingertip Keyboard Tessutivo Tactlets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1