{"title":"垂直管内上升泰勒气泡对流传热传质的现象学预测","authors":"A. Kendoush","doi":"10.1115/ajkfluids2019-5030","DOIUrl":null,"url":null,"abstract":"\n Phenomenological equations derived for the convective heat and mass transfer to Taylor bubbles (TB) rising in vertical cylindrical pipes. Three models presented; first for the bubble thin liquid layer region, second for the rounded nose region, and third for the wake region. The solution is confined to flat-ended Taylor bubbles under laminar flow and constant heat flux conditions. The results compared reasonably well with the experimental data of other investigators.","PeriodicalId":322380,"journal":{"name":"Volume 5: Multiphase Flow","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenomenological Prediction of Convective Heat and Mass Transfer to Taylor Bubbles Rising in Vertical Pipes\",\"authors\":\"A. Kendoush\",\"doi\":\"10.1115/ajkfluids2019-5030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Phenomenological equations derived for the convective heat and mass transfer to Taylor bubbles (TB) rising in vertical cylindrical pipes. Three models presented; first for the bubble thin liquid layer region, second for the rounded nose region, and third for the wake region. The solution is confined to flat-ended Taylor bubbles under laminar flow and constant heat flux conditions. The results compared reasonably well with the experimental data of other investigators.\",\"PeriodicalId\":322380,\"journal\":{\"name\":\"Volume 5: Multiphase Flow\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Multiphase Flow\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-5030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phenomenological Prediction of Convective Heat and Mass Transfer to Taylor Bubbles Rising in Vertical Pipes
Phenomenological equations derived for the convective heat and mass transfer to Taylor bubbles (TB) rising in vertical cylindrical pipes. Three models presented; first for the bubble thin liquid layer region, second for the rounded nose region, and third for the wake region. The solution is confined to flat-ended Taylor bubbles under laminar flow and constant heat flux conditions. The results compared reasonably well with the experimental data of other investigators.