一种基于大数据的在线密码猜测方法

Zhiyong Li, Tao Li, Fangdong Zhu
{"title":"一种基于大数据的在线密码猜测方法","authors":"Zhiyong Li, Tao Li, Fangdong Zhu","doi":"10.1145/3325773.3325779","DOIUrl":null,"url":null,"abstract":"Password authentication is the most widely used authentication method in information systems. The traditional proactive password detection method is generally implemented by counting password length, character class number and computing password information entropy to improve password security. However, passwords that pass proactive password detection do not represent that they are secure. In this paper, based on the research of the characteristics of password distribution under big data, we propose an online password guessing method, which collects a dataset of guessing passwords composed of weak passwords, high frequency passwords and personal information related passwords. It is used to guess the 13k password dataset leaked in China's largest ticketing website, China Railways 12306 website. The experimental results show that even if our guess object has passed the strict proactive password detection, we can construct a guessing password dataset contain only 100 passwords, and effectively guess 4.84% of the passwords.","PeriodicalId":419017,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Online Password Guessing Method Based on Big Data\",\"authors\":\"Zhiyong Li, Tao Li, Fangdong Zhu\",\"doi\":\"10.1145/3325773.3325779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Password authentication is the most widely used authentication method in information systems. The traditional proactive password detection method is generally implemented by counting password length, character class number and computing password information entropy to improve password security. However, passwords that pass proactive password detection do not represent that they are secure. In this paper, based on the research of the characteristics of password distribution under big data, we propose an online password guessing method, which collects a dataset of guessing passwords composed of weak passwords, high frequency passwords and personal information related passwords. It is used to guess the 13k password dataset leaked in China's largest ticketing website, China Railways 12306 website. The experimental results show that even if our guess object has passed the strict proactive password detection, we can construct a guessing password dataset contain only 100 passwords, and effectively guess 4.84% of the passwords.\",\"PeriodicalId\":419017,\"journal\":{\"name\":\"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3325773.3325779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3325773.3325779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

密码认证是信息系统中应用最广泛的认证方式。传统的主动密码检测方法一般通过统计密码长度、字符类数和计算密码信息熵来提高密码的安全性。但是,通过主动密码检测的密码并不代表它们是安全的。本文在研究大数据下密码分布特征的基础上,提出了一种在线密码猜测方法,该方法收集由弱密码、高频密码和个人信息相关密码组成的猜测密码数据集。它被用来猜测中国最大的票务网站中国铁路12306网站泄露的13k密码数据集。实验结果表明,即使我们的猜测对象通过了严格的主动密码检测,我们也可以构建一个仅包含100个密码的猜测密码数据集,有效猜测的密码率为4.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Online Password Guessing Method Based on Big Data
Password authentication is the most widely used authentication method in information systems. The traditional proactive password detection method is generally implemented by counting password length, character class number and computing password information entropy to improve password security. However, passwords that pass proactive password detection do not represent that they are secure. In this paper, based on the research of the characteristics of password distribution under big data, we propose an online password guessing method, which collects a dataset of guessing passwords composed of weak passwords, high frequency passwords and personal information related passwords. It is used to guess the 13k password dataset leaked in China's largest ticketing website, China Railways 12306 website. The experimental results show that even if our guess object has passed the strict proactive password detection, we can construct a guessing password dataset contain only 100 passwords, and effectively guess 4.84% of the passwords.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Online Password Guessing Method Based on Big Data Feature-Weighted Fuzzy K-Modes Clustering Epilepsy Detection in EEG Signal using Recurrent Neural Network Analysis of Ant Colony Optimization on a Dynamically Changing Optical Burst Switched Network with Impairments Gaussian Process Dynamical Autoencoder Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1