人工神经网络辅助振幅阈值法改进了尖峰检测

Xiang Cheng, Xuan Han, Yu Song, Tielin Zhang, Bo Xu
{"title":"人工神经网络辅助振幅阈值法改进了尖峰检测","authors":"Xiang Cheng, Xuan Han, Yu Song, Tielin Zhang, Bo Xu","doi":"10.1145/3581807.3581875","DOIUrl":null,"url":null,"abstract":"As brain-related research presents increasing importance, the requirement for automatic spike detection algorithms also emerges. Traditional spike detection algorithms, including amplitude thresholding and wavelet transformation, show several shortcomings that impede the practical application. Here, we propose an artificial neural network-assisted amplitude thresholding algorithm and conduct experiments with raw signals collected from the primary somatosensory cortex and primary motor cortex of macaques. Using F1 score as an evaluation index, artificial neural networks, as well as its lightweight version, effectively help the amplitude thresholding to achieve better performance, showing enormous potential for real-time spike detection application.","PeriodicalId":292813,"journal":{"name":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Network-assisted Amplitude Thresholding Improves Spike Detection\",\"authors\":\"Xiang Cheng, Xuan Han, Yu Song, Tielin Zhang, Bo Xu\",\"doi\":\"10.1145/3581807.3581875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As brain-related research presents increasing importance, the requirement for automatic spike detection algorithms also emerges. Traditional spike detection algorithms, including amplitude thresholding and wavelet transformation, show several shortcomings that impede the practical application. Here, we propose an artificial neural network-assisted amplitude thresholding algorithm and conduct experiments with raw signals collected from the primary somatosensory cortex and primary motor cortex of macaques. Using F1 score as an evaluation index, artificial neural networks, as well as its lightweight version, effectively help the amplitude thresholding to achieve better performance, showing enormous potential for real-time spike detection application.\",\"PeriodicalId\":292813,\"journal\":{\"name\":\"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3581807.3581875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581807.3581875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着脑相关研究的日益重要,对自动脉冲检测算法的需求也随之出现。传统的尖峰检测算法,包括幅度阈值法和小波变换等,都存在着阻碍实际应用的缺点。本文提出了一种人工神经网络辅助振幅阈值算法,并对猕猴初级体感皮层和初级运动皮层的原始信号进行了实验。利用F1分数作为评价指标,人工神经网络及其轻量级版本有效地帮助幅值阈值达到更好的性能,在实时尖峰检测应用中显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Neural Network-assisted Amplitude Thresholding Improves Spike Detection
As brain-related research presents increasing importance, the requirement for automatic spike detection algorithms also emerges. Traditional spike detection algorithms, including amplitude thresholding and wavelet transformation, show several shortcomings that impede the practical application. Here, we propose an artificial neural network-assisted amplitude thresholding algorithm and conduct experiments with raw signals collected from the primary somatosensory cortex and primary motor cortex of macaques. Using F1 score as an evaluation index, artificial neural networks, as well as its lightweight version, effectively help the amplitude thresholding to achieve better performance, showing enormous potential for real-time spike detection application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Channel Attention for Chinese Scene Text Recognition Vehicle Re-identification Based on Multi-Scale Attention Feature Fusion Comparative Study on EEG Feature Recognition based on Deep Belief Network VA-TransUNet: A U-shaped Medical Image Segmentation Network with Visual Attention Traffic Flow Forecasting Research Based on Delay Reconstruction and GRU-SVR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1