Jialei Shi, Wenlong Gaozhang, Hanyu Jin, Ge Shi, H. Wurdemann
{"title":"气动软机器人的特性与控制平台:设计与应用","authors":"Jialei Shi, Wenlong Gaozhang, Hanyu Jin, Ge Shi, H. Wurdemann","doi":"10.1109/RoboSoft55895.2023.10122041","DOIUrl":null,"url":null,"abstract":"Driven by performance criteria and requirements from specific applications in healthcare for instance, the soft robotics community has created a huge amount of different designs for pneumatically actuated soft robots. The assessment with regard to these criteria usually involves a full characterisation of the soft robotic system. In order to support these efforts during the prototyping phase and standardise assessment procedures, a physical platform is described in this paper that allows to gain essential insights into the characterisation and validation of control algorithms for pneumatically driven soft robots. The platform can be connected to a MATLAB Graphical User Interface allowing to send pressure values as well as record and plot data, and, hence, it is able to actuate and characterise main features of soft robots, such as the kinematics/dynamics, stiffness and force capability. The user can choose between two control units including the NI USB-6341 and Arduino Due. These components facilitate implementing and validating control algorithms using different tools, e.g., MATLAB/Simulink. To demonstrate the feasibility and functionalities of our platform, three soft robotic systems have been analysed. We present characterisation results for a variable stiffness joint, the kinematics results during the inflation of an elastic membrane and the validation of an open-loop control strategy for a soft continuum robot.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterisation and control platform for pneumatically driven soft robots: Design and applications\",\"authors\":\"Jialei Shi, Wenlong Gaozhang, Hanyu Jin, Ge Shi, H. Wurdemann\",\"doi\":\"10.1109/RoboSoft55895.2023.10122041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven by performance criteria and requirements from specific applications in healthcare for instance, the soft robotics community has created a huge amount of different designs for pneumatically actuated soft robots. The assessment with regard to these criteria usually involves a full characterisation of the soft robotic system. In order to support these efforts during the prototyping phase and standardise assessment procedures, a physical platform is described in this paper that allows to gain essential insights into the characterisation and validation of control algorithms for pneumatically driven soft robots. The platform can be connected to a MATLAB Graphical User Interface allowing to send pressure values as well as record and plot data, and, hence, it is able to actuate and characterise main features of soft robots, such as the kinematics/dynamics, stiffness and force capability. The user can choose between two control units including the NI USB-6341 and Arduino Due. These components facilitate implementing and validating control algorithms using different tools, e.g., MATLAB/Simulink. To demonstrate the feasibility and functionalities of our platform, three soft robotic systems have been analysed. We present characterisation results for a variable stiffness joint, the kinematics results during the inflation of an elastic membrane and the validation of an open-loop control strategy for a soft continuum robot.\",\"PeriodicalId\":250981,\"journal\":{\"name\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoboSoft55895.2023.10122041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10122041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterisation and control platform for pneumatically driven soft robots: Design and applications
Driven by performance criteria and requirements from specific applications in healthcare for instance, the soft robotics community has created a huge amount of different designs for pneumatically actuated soft robots. The assessment with regard to these criteria usually involves a full characterisation of the soft robotic system. In order to support these efforts during the prototyping phase and standardise assessment procedures, a physical platform is described in this paper that allows to gain essential insights into the characterisation and validation of control algorithms for pneumatically driven soft robots. The platform can be connected to a MATLAB Graphical User Interface allowing to send pressure values as well as record and plot data, and, hence, it is able to actuate and characterise main features of soft robots, such as the kinematics/dynamics, stiffness and force capability. The user can choose between two control units including the NI USB-6341 and Arduino Due. These components facilitate implementing and validating control algorithms using different tools, e.g., MATLAB/Simulink. To demonstrate the feasibility and functionalities of our platform, three soft robotic systems have been analysed. We present characterisation results for a variable stiffness joint, the kinematics results during the inflation of an elastic membrane and the validation of an open-loop control strategy for a soft continuum robot.