基因调控网络的建模和鉴定:格兰杰因果关系方法

Z. G. Zhang, Y. Hung, S. Chan, Weichao Xu, Yong Hu
{"title":"基因调控网络的建模和鉴定:格兰杰因果关系方法","authors":"Z. G. Zhang, Y. Hung, S. Chan, Weichao Xu, Yong Hu","doi":"10.1109/ICMLC.2010.5580719","DOIUrl":null,"url":null,"abstract":"It is of increasing interest in systems biology to discover gene regulatory networks (GRNs) from time-series genomic data, i.e., to explore the interactions among a large number of genes and gene products over time. Currently, one common approach is based on Granger causality, which models the time-series genomic data as a vector autoregressive (VAR) process and estimates the GRNs from the VAR coefficient matrix. The main challenge for identification of VAR models is the high dimensionality of genes and limited number of time points, which results in statistically inefficient solution and high computational complexity. Therefore, fast and efficient variable selection techniques are highly desirable. In this paper, an introductory review of identification methods and variable selection techniques for VAR models in learning the GRNs will be presented. Furthermore, a dynamic VAR (DVAR) model, which accounts for dynamic GRNs changing with time during the experimental cycle, and its identification methods are introduced.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Modeling and identification of gene regulatory networks: A Granger causality approach\",\"authors\":\"Z. G. Zhang, Y. Hung, S. Chan, Weichao Xu, Yong Hu\",\"doi\":\"10.1109/ICMLC.2010.5580719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is of increasing interest in systems biology to discover gene regulatory networks (GRNs) from time-series genomic data, i.e., to explore the interactions among a large number of genes and gene products over time. Currently, one common approach is based on Granger causality, which models the time-series genomic data as a vector autoregressive (VAR) process and estimates the GRNs from the VAR coefficient matrix. The main challenge for identification of VAR models is the high dimensionality of genes and limited number of time points, which results in statistically inefficient solution and high computational complexity. Therefore, fast and efficient variable selection techniques are highly desirable. In this paper, an introductory review of identification methods and variable selection techniques for VAR models in learning the GRNs will be presented. Furthermore, a dynamic VAR (DVAR) model, which accounts for dynamic GRNs changing with time during the experimental cycle, and its identification methods are introduced.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"2011 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5580719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

从时间序列基因组数据中发现基因调控网络(grn),即探索大量基因和基因产物之间随时间的相互作用,是系统生物学越来越感兴趣的领域。目前,一种常用的方法是基于格兰杰因果关系,将时间序列基因组数据建模为向量自回归(VAR)过程,并从VAR系数矩阵中估计grn。VAR模型识别的主要挑战是基因的高维数和有限的时间点,这导致了统计效率低下和计算复杂度高。因此,快速高效的变量选择技术是非常需要的。在本文中,将介绍VAR模型在学习grn中的识别方法和变量选择技术。在此基础上,提出了考虑试验周期内grn随时间变化的动态VAR (DVAR)模型及其辨识方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and identification of gene regulatory networks: A Granger causality approach
It is of increasing interest in systems biology to discover gene regulatory networks (GRNs) from time-series genomic data, i.e., to explore the interactions among a large number of genes and gene products over time. Currently, one common approach is based on Granger causality, which models the time-series genomic data as a vector autoregressive (VAR) process and estimates the GRNs from the VAR coefficient matrix. The main challenge for identification of VAR models is the high dimensionality of genes and limited number of time points, which results in statistically inefficient solution and high computational complexity. Therefore, fast and efficient variable selection techniques are highly desirable. In this paper, an introductory review of identification methods and variable selection techniques for VAR models in learning the GRNs will be presented. Furthermore, a dynamic VAR (DVAR) model, which accounts for dynamic GRNs changing with time during the experimental cycle, and its identification methods are introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Does joint decoding really outperform cascade processing in English-to-Chinese transliteration generation? The role of syllabification The design of energy-saving filtering mechanism for sensor networks Feature-based approach combined with hierarchical classifying strategy to relation extraction The comparative study of different Bayesian classifier models New inverse halftoning using texture-and lookup table-based learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1