基于高斯函数的入侵检测改进k-均值聚类算法

G. R. Kumar, N. Mangathayaru, G. Narasimha
{"title":"基于高斯函数的入侵检测改进k-均值聚类算法","authors":"G. R. Kumar, N. Mangathayaru, G. Narasimha","doi":"10.1145/2832987.2833082","DOIUrl":null,"url":null,"abstract":"In this paper the major objective is to design and analyze the suitability of Gaussian similarity measure for intrusion detection. The objective is to use this as a distance measure to find the distance between any two data samples of training set such as DARPA Data Set, KDD Data Set. This major objective is to use this measure as a distance metric when applying k-means algorithm. The novelty of this approach is making use of the proposed distance function as part of k-means algorithm so as to obtain disjoint clusters. This is followed by a case study, which demonstrates the process of Intrusion Detection. The proposed similarity has fixed upper and lower bounds.","PeriodicalId":416001,"journal":{"name":"Proceedings of the The International Conference on Engineering & MIS 2015","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"An improved k-Means Clustering algorithm for Intrusion Detection using Gaussian function\",\"authors\":\"G. R. Kumar, N. Mangathayaru, G. Narasimha\",\"doi\":\"10.1145/2832987.2833082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the major objective is to design and analyze the suitability of Gaussian similarity measure for intrusion detection. The objective is to use this as a distance measure to find the distance between any two data samples of training set such as DARPA Data Set, KDD Data Set. This major objective is to use this measure as a distance metric when applying k-means algorithm. The novelty of this approach is making use of the proposed distance function as part of k-means algorithm so as to obtain disjoint clusters. This is followed by a case study, which demonstrates the process of Intrusion Detection. The proposed similarity has fixed upper and lower bounds.\",\"PeriodicalId\":416001,\"journal\":{\"name\":\"Proceedings of the The International Conference on Engineering & MIS 2015\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the The International Conference on Engineering & MIS 2015\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2832987.2833082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the The International Conference on Engineering & MIS 2015","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2832987.2833082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

本文的主要目的是设计和分析高斯相似度量在入侵检测中的适用性。目标是使用它作为距离度量来找到训练集(如DARPA数据集,KDD数据集)的任意两个数据样本之间的距离。这个主要目标是在应用k-means算法时使用这个度量作为距离度量。该方法的新颖之处在于利用所提出的距离函数作为k-means算法的一部分,从而获得不相交的聚类。接下来是一个案例研究,演示了入侵检测的过程。所提出的相似度有固定的上下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved k-Means Clustering algorithm for Intrusion Detection using Gaussian function
In this paper the major objective is to design and analyze the suitability of Gaussian similarity measure for intrusion detection. The objective is to use this as a distance measure to find the distance between any two data samples of training set such as DARPA Data Set, KDD Data Set. This major objective is to use this measure as a distance metric when applying k-means algorithm. The novelty of this approach is making use of the proposed distance function as part of k-means algorithm so as to obtain disjoint clusters. This is followed by a case study, which demonstrates the process of Intrusion Detection. The proposed similarity has fixed upper and lower bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Discrete Flower Pollination Algorithm for Graph Coloring Problem QoS web service Security Access Control case study using HTTP Secured Socket Layer Approach An improved k-Means Clustering algorithm for Intrusion Detection using Gaussian function A Feature Vector Based Approach for Software Component Clustering and Reuse Using K-means A Proposed Method to Recognize the Research Trends using Web-based Search Engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1