从手机数据中识别幸福

Andrey Bogomolov, B. Lepri, F. Pianesi
{"title":"从手机数据中识别幸福","authors":"Andrey Bogomolov, B. Lepri, F. Pianesi","doi":"10.1109/SocialCom.2013.118","DOIUrl":null,"url":null,"abstract":"In this paper we provide the first evidence that daily happiness of individuals can be automatically recognized using an extensive set of indicators obtained from the mobile phone usage data (call log, sms and Bluetooth proximity data) and ``background noise'' indicators coming from the weather factor and personality traits. Our final machine learning model, based on the Random Forest classifier, obtains an accuracy score of 80.81% for a 3-class daily happiness recognition problem. Moreover, we identify and discuss the indicators, which have strong predictive power in the source and the feature spaces, discuss different approaches, machine learning models and provide an insight for future research.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Happiness Recognition from Mobile Phone Data\",\"authors\":\"Andrey Bogomolov, B. Lepri, F. Pianesi\",\"doi\":\"10.1109/SocialCom.2013.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide the first evidence that daily happiness of individuals can be automatically recognized using an extensive set of indicators obtained from the mobile phone usage data (call log, sms and Bluetooth proximity data) and ``background noise'' indicators coming from the weather factor and personality traits. Our final machine learning model, based on the Random Forest classifier, obtains an accuracy score of 80.81% for a 3-class daily happiness recognition problem. Moreover, we identify and discuss the indicators, which have strong predictive power in the source and the feature spaces, discuss different approaches, machine learning models and provide an insight for future research.\",\"PeriodicalId\":129308,\"journal\":{\"name\":\"2013 International Conference on Social Computing\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialCom.2013.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom.2013.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

在本文中,我们提供了第一个证据,证明个人的日常幸福可以通过从手机使用数据(通话记录、短信和蓝牙接近数据)和来自天气因素和个性特征的“背景噪音”指标中获得的一套广泛的指标来自动识别。我们最终的机器学习模型,基于随机森林分类器,获得了一个3类日常幸福识别问题的准确率得分为80.81%。此外,我们识别和讨论了在源空间和特征空间中具有较强预测能力的指标,讨论了不同的方法,机器学习模型,并为未来的研究提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Happiness Recognition from Mobile Phone Data
In this paper we provide the first evidence that daily happiness of individuals can be automatically recognized using an extensive set of indicators obtained from the mobile phone usage data (call log, sms and Bluetooth proximity data) and ``background noise'' indicators coming from the weather factor and personality traits. Our final machine learning model, based on the Random Forest classifier, obtains an accuracy score of 80.81% for a 3-class daily happiness recognition problem. Moreover, we identify and discuss the indicators, which have strong predictive power in the source and the feature spaces, discuss different approaches, machine learning models and provide an insight for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group Recommendation Algorithm with Collaborative Filtering Access Control Policy Extraction from Unconstrained Natural Language Text Stock Market Manipulation Using Cyberattacks Together with Misinformation Disseminated through Social Media Friendship Prediction on Social Network Users An Empirical Comparison of Graph Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1