基于隐马尔可夫模型和多词汇特定向量量化的独立于说话人的孤立数字识别

L. Cossette, E. Velez, V. Cuperman
{"title":"基于隐马尔可夫模型和多词汇特定向量量化的独立于说话人的孤立数字识别","authors":"L. Cossette, E. Velez, V. Cuperman","doi":"10.1109/PACRIM.1991.160702","DOIUrl":null,"url":null,"abstract":"A discrete hidden Markov model (HMM) system recognizer using word-specific vector quantization is described. The word-specific VQ approach is suggested as an alternative to universal codebook vector quantization. The set of word-specific VQ index sequences is connected to each of the word-specific HMM models. For speaker-independent isolated digit recognition with a studio recorded database, a performance of 99.5% was obtained for the word-specific codebook VQ-HMM recognizer, which is an improvement of 2% when compared to a universal codebook VQ-HMM recognizer tested on the same speech database.<<ETX>>","PeriodicalId":289986,"journal":{"name":"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Speaker-independent isolated-digit recognition based on hidden Markov models and multiple vocabulary specific vector quantization\",\"authors\":\"L. Cossette, E. Velez, V. Cuperman\",\"doi\":\"10.1109/PACRIM.1991.160702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A discrete hidden Markov model (HMM) system recognizer using word-specific vector quantization is described. The word-specific VQ approach is suggested as an alternative to universal codebook vector quantization. The set of word-specific VQ index sequences is connected to each of the word-specific HMM models. For speaker-independent isolated digit recognition with a studio recorded database, a performance of 99.5% was obtained for the word-specific codebook VQ-HMM recognizer, which is an improvement of 2% when compared to a universal codebook VQ-HMM recognizer tested on the same speech database.<<ETX>>\",\"PeriodicalId\":289986,\"journal\":{\"name\":\"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.1991.160702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1991.160702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

描述了一种基于词向量量化的离散隐马尔可夫模型(HMM)系统识别器。单词特定的VQ方法被建议作为通用码本矢量量化的替代方案。特定于单词的VQ索引序列集连接到每个特定于单词的HMM模型。对于使用录音室记录数据库的独立于说话人的孤立数字识别,单词特定码本VQ-HMM识别器的性能达到99.5%,与在相同语音数据库上测试的通用码本VQ-HMM识别器相比,提高了2%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speaker-independent isolated-digit recognition based on hidden Markov models and multiple vocabulary specific vector quantization
A discrete hidden Markov model (HMM) system recognizer using word-specific vector quantization is described. The word-specific VQ approach is suggested as an alternative to universal codebook vector quantization. The set of word-specific VQ index sequences is connected to each of the word-specific HMM models. For speaker-independent isolated digit recognition with a studio recorded database, a performance of 99.5% was obtained for the word-specific codebook VQ-HMM recognizer, which is an improvement of 2% when compared to a universal codebook VQ-HMM recognizer tested on the same speech database.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systolic array implementation of 2-D finite memory filters Adaptive signal-subspace processing based on first-order perturbation analysis Suppression of narrow-band interference and multipath by spread-spectrum receiver using decision-feedback filters An LU factorization algorithm for parallel supercomputers with memory hierarchies DEDIP: a user-friendly environment for digital image processing algorithm development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1