基于在线机器学习的机器故障检测新方法

Jiang Yi, Lei Lin
{"title":"基于在线机器学习的机器故障检测新方法","authors":"Jiang Yi, Lei Lin","doi":"10.1109/ICCCAS.2018.8768985","DOIUrl":null,"url":null,"abstract":"The article first analyzes many existing machine running fault diagnosis methods, which may not be good for on-line detection in view of the complexity of the algorithm. At the same time, studies the characteristics of random noise modulation. Then, designs a new on-line self-learning evolutionary fault detection method based on the FFT algorithm. The simulation shows that the method has good detection performance for a weak fault signal.","PeriodicalId":166878,"journal":{"name":"2018 10th International Conference on Communications, Circuits and Systems (ICCCAS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Method of Machine Fault Detection Based on Machine Learning on Line\",\"authors\":\"Jiang Yi, Lei Lin\",\"doi\":\"10.1109/ICCCAS.2018.8768985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article first analyzes many existing machine running fault diagnosis methods, which may not be good for on-line detection in view of the complexity of the algorithm. At the same time, studies the characteristics of random noise modulation. Then, designs a new on-line self-learning evolutionary fault detection method based on the FFT algorithm. The simulation shows that the method has good detection performance for a weak fault signal.\",\"PeriodicalId\":166878,\"journal\":{\"name\":\"2018 10th International Conference on Communications, Circuits and Systems (ICCCAS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Communications, Circuits and Systems (ICCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCAS.2018.8768985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Communications, Circuits and Systems (ICCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCAS.2018.8768985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先分析了现有的许多机器运行故障诊断方法,考虑到算法的复杂性,这些方法可能不利于在线检测。同时,研究了随机噪声调制的特性。然后,设计了一种基于FFT算法的在线自学习进化故障检测方法。仿真结果表明,该方法对微弱的故障信号具有良好的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Method of Machine Fault Detection Based on Machine Learning on Line
The article first analyzes many existing machine running fault diagnosis methods, which may not be good for on-line detection in view of the complexity of the algorithm. At the same time, studies the characteristics of random noise modulation. Then, designs a new on-line self-learning evolutionary fault detection method based on the FFT algorithm. The simulation shows that the method has good detection performance for a weak fault signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of Gesture Recognition Device A New Method for Reducing PAPR in OFDM System Based on GreenOFDM Performance Analysis of Energy Harvesting Based Multi-source RA-coded Cooperative System A New Method of Machine Fault Detection Based on Machine Learning on Line Research on Lightning Performance of Back-flashover of UHV Direct Current Double-circuit Mixed-voltage Transmission Lines on the Same Tower
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1