优化的泛化型2连接和满足操作

Sarah Greenfield, R. John
{"title":"优化的泛化型2连接和满足操作","authors":"Sarah Greenfield, R. John","doi":"10.1109/FUZZY.2007.4295355","DOIUrl":null,"url":null,"abstract":"The inferencing stage of a type-2 fuzzy inferencing system is driven by join and meet operations. As conventionally implemented these algorithms are computationally complex. This article introduces optimised implementations for these operations. These alternative procedures pre-suppose that the grid method of discretisation is adopted. Time comparisons between the alternative and conventional implementations have been undertaken, for join and meet operations coded firstly in isolation, and secondly, within a full prototype type-2 fuzzy inferencing system. The experimental results show that the optimisation affords marked time reduction, particularly under finer discretisation.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Optimised Generalised Type-2 Join and Meet Operations\",\"authors\":\"Sarah Greenfield, R. John\",\"doi\":\"10.1109/FUZZY.2007.4295355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inferencing stage of a type-2 fuzzy inferencing system is driven by join and meet operations. As conventionally implemented these algorithms are computationally complex. This article introduces optimised implementations for these operations. These alternative procedures pre-suppose that the grid method of discretisation is adopted. Time comparisons between the alternative and conventional implementations have been undertaken, for join and meet operations coded firstly in isolation, and secondly, within a full prototype type-2 fuzzy inferencing system. The experimental results show that the optimisation affords marked time reduction, particularly under finer discretisation.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

二类模糊推理系统的推理阶段由连接和满足操作驱动。按照惯例,这些算法在计算上是复杂的。本文将介绍针对这些操作的优化实现。这些备选程序的前提是采用离散化的网格方法。对于join和meet操作,首先在隔离中编码,其次在完整的原型2型模糊推理系统中编码,对替代实现和传统实现进行了时间比较。实验结果表明,优化可以显著缩短时间,特别是在更精细的离散化情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimised Generalised Type-2 Join and Meet Operations
The inferencing stage of a type-2 fuzzy inferencing system is driven by join and meet operations. As conventionally implemented these algorithms are computationally complex. This article introduces optimised implementations for these operations. These alternative procedures pre-suppose that the grid method of discretisation is adopted. Time comparisons between the alternative and conventional implementations have been undertaken, for join and meet operations coded firstly in isolation, and secondly, within a full prototype type-2 fuzzy inferencing system. The experimental results show that the optimisation affords marked time reduction, particularly under finer discretisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microcalcification Detection in Mammograms Using Interval Type-2 Fuzzy Logic System System of fuzzy relation equations with sup-* composition in semi-linear spaces: minimal solutions Parallel Type-2 Fuzzy Logic Co-Processors for Engine Management Robust H∞ Filtering for Fuzzy Time-Delay Systems Neural Networks for Author Attribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1