用于美国手语拼写识别的加权平均CNN集成的比例空间模型

Neena Aloysius, M. Geetha
{"title":"用于美国手语拼写识别的加权平均CNN集成的比例空间模型","authors":"Neena Aloysius, M. Geetha","doi":"10.1504/ijcse.2020.10029229","DOIUrl":null,"url":null,"abstract":"A sign language recognition system facilitates communication between the deaf community and the hearing majority. This paper proposes a novel specialised convolutional neural network (CNN) model, SignNet, to recognise hand gesture signs by incorporating scale space theory to deep learning framework. The proposed model is a weighted average ensemble of CNNs – a low resolution network (LRN), an intermediate resolution network (IRN) and a high resolution network (HRN). Augmented versions of VGG-16 are used as LRN, IRN and HRN. The ensemble works at different spatial resolutions and at varying depths of CNN. The SignNet model was assessed with static signs of American Sign Language – alphabets and digits. Since there exists no sign dataset for deep learning, the ensemble performance is evaluated on the synthetic dataset which we have collected for this task. Assessment of the synthetic dataset by SignNet reported an impressive accuracy of over 92%, notably superior to the other existing models.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A scale space model of weighted average CNN ensemble for ASL fingerspelling recognition\",\"authors\":\"Neena Aloysius, M. Geetha\",\"doi\":\"10.1504/ijcse.2020.10029229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sign language recognition system facilitates communication between the deaf community and the hearing majority. This paper proposes a novel specialised convolutional neural network (CNN) model, SignNet, to recognise hand gesture signs by incorporating scale space theory to deep learning framework. The proposed model is a weighted average ensemble of CNNs – a low resolution network (LRN), an intermediate resolution network (IRN) and a high resolution network (HRN). Augmented versions of VGG-16 are used as LRN, IRN and HRN. The ensemble works at different spatial resolutions and at varying depths of CNN. The SignNet model was assessed with static signs of American Sign Language – alphabets and digits. Since there exists no sign dataset for deep learning, the ensemble performance is evaluated on the synthetic dataset which we have collected for this task. Assessment of the synthetic dataset by SignNet reported an impressive accuracy of over 92%, notably superior to the other existing models.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcse.2020.10029229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2020.10029229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

手语识别系统有助于聋人社区和听力正常的大多数人之间的交流。本文提出了一种新的专用卷积神经网络(CNN)模型SignNet,该模型通过将尺度空间理论结合到深度学习框架中来识别手势符号。该模型是cnn -低分辨率网络(LRN)、中分辨率网络(IRN)和高分辨率网络(HRN)的加权平均集成。VGG-16的增强版本被用作LRN、IRN和HRN。该集合在不同的空间分辨率和CNN的不同深度下工作。SignNet模型用美国手语的静态符号-字母和数字进行评估。由于不存在用于深度学习的符号数据集,因此集成性能是在我们为此任务收集的合成数据集上进行评估的。SignNet对合成数据集的评估报告了超过92%的令人印象深刻的准确性,明显优于其他现有模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A scale space model of weighted average CNN ensemble for ASL fingerspelling recognition
A sign language recognition system facilitates communication between the deaf community and the hearing majority. This paper proposes a novel specialised convolutional neural network (CNN) model, SignNet, to recognise hand gesture signs by incorporating scale space theory to deep learning framework. The proposed model is a weighted average ensemble of CNNs – a low resolution network (LRN), an intermediate resolution network (IRN) and a high resolution network (HRN). Augmented versions of VGG-16 are used as LRN, IRN and HRN. The ensemble works at different spatial resolutions and at varying depths of CNN. The SignNet model was assessed with static signs of American Sign Language – alphabets and digits. Since there exists no sign dataset for deep learning, the ensemble performance is evaluated on the synthetic dataset which we have collected for this task. Assessment of the synthetic dataset by SignNet reported an impressive accuracy of over 92%, notably superior to the other existing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC-based lightweight mutual authentication protocol for fog enabled IoT system using three-way authentication procedure Gene selection and classification combining information gain ratio with fruit fly optimisation algorithm for single-cell RNA-seq data Attitude control of an unmanned patrol helicopter based on an optimised spiking neural membrane system for use in coal mines CEMP-IR: a novel location aware cache invalidation and replacement policy Prediction of consumer preference for the bottom of the pyramid using EEG-based deep model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1