昼夜节律系统的光谱灵敏度

M. Figueiro, John D. Bullough, M. Rea
{"title":"昼夜节律系统的光谱灵敏度","authors":"M. Figueiro, John D. Bullough, M. Rea","doi":"10.1117/12.511856","DOIUrl":null,"url":null,"abstract":"Light exposure regulates several circadian functions in normal humans including the sleep-wake cycle. Individuals with Alzheimer’s Disease (AD) often do not have regular patterns of activity and rest, but, rather, experience random periods of sleep and agitation during both day and night. Bright light during the day and darkness at night has been shown to consolidate activity periods during the day and rest periods at night in AD patients. The important characteristics of bright light exposure (quantity, spectrum, distribution, timing and duration) for achieving these results in AD patients is not yet understood. Recent research has shown that moderate (~18 lx at the cornea) blue (~470 nm) light is effective at suppressing melatonin in normal humans. It was hypothesized that blue light applied just before AD patients retire to their beds for the night would have a measurable impact on their behavior. A pilot study was conducted for 30 days in a senior health care facility using four individuals diagnosed with mild to moderate levels of dementia. Four AD patients were exposed to arrays of blue light from light emitting diodes (max wavelength = 470 nm) in two-hour sessions (18:00 to 20:00 hours) for 10 days. As a control, they were exposed to red light (max wavelength = 640 nm) in two-hour sessions for 10 days prior to the blue light exposure. Despite the modest sample size, exposure to blue LEDs has shown to affect sleep quality and median body temperature peak of these AD patients. Median body temperature peak was delayed by approximately 2 hours after exposure to blue LEDs compared to exposure to red LEDs and sleep quality was improved. This pilot study demonstrated that light, especially LEDs, can be an important contribution to helping AD patients regulate their circadian functions.","PeriodicalId":406438,"journal":{"name":"SPIE Optics + Photonics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Spectral sensitivity of the circadian system\",\"authors\":\"M. Figueiro, John D. Bullough, M. Rea\",\"doi\":\"10.1117/12.511856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light exposure regulates several circadian functions in normal humans including the sleep-wake cycle. Individuals with Alzheimer’s Disease (AD) often do not have regular patterns of activity and rest, but, rather, experience random periods of sleep and agitation during both day and night. Bright light during the day and darkness at night has been shown to consolidate activity periods during the day and rest periods at night in AD patients. The important characteristics of bright light exposure (quantity, spectrum, distribution, timing and duration) for achieving these results in AD patients is not yet understood. Recent research has shown that moderate (~18 lx at the cornea) blue (~470 nm) light is effective at suppressing melatonin in normal humans. It was hypothesized that blue light applied just before AD patients retire to their beds for the night would have a measurable impact on their behavior. A pilot study was conducted for 30 days in a senior health care facility using four individuals diagnosed with mild to moderate levels of dementia. Four AD patients were exposed to arrays of blue light from light emitting diodes (max wavelength = 470 nm) in two-hour sessions (18:00 to 20:00 hours) for 10 days. As a control, they were exposed to red light (max wavelength = 640 nm) in two-hour sessions for 10 days prior to the blue light exposure. Despite the modest sample size, exposure to blue LEDs has shown to affect sleep quality and median body temperature peak of these AD patients. Median body temperature peak was delayed by approximately 2 hours after exposure to blue LEDs compared to exposure to red LEDs and sleep quality was improved. This pilot study demonstrated that light, especially LEDs, can be an important contribution to helping AD patients regulate their circadian functions.\",\"PeriodicalId\":406438,\"journal\":{\"name\":\"SPIE Optics + Photonics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optics + Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.511856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.511856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

光照调节了正常人的几种昼夜节律功能,包括睡眠-觉醒周期。阿尔茨海默病(AD)患者通常没有规律的活动和休息模式,而是在白天和晚上经历随机的睡眠和躁动。白天明亮的光线和夜晚的黑暗已被证明可以巩固阿尔茨海默病患者白天的活动期和晚上的休息期。在AD患者中实现这些结果的亮光暴露的重要特征(数量、光谱、分布、时间和持续时间)尚不清楚。最近的研究表明,中度(角膜处约18 lx)蓝光(约470 nm)可有效抑制正常人体内的褪黑激素。据推测,在阿尔茨海默病患者上床睡觉之前使用蓝光会对他们的行为产生可测量的影响。在一家高级卫生保健机构进行了一项为期30天的试点研究,研究对象是四名被诊断患有轻度至中度痴呆症的人。4名AD患者连续10天,每两个小时(18:00至20:00)暴露于发光二极管发出的蓝光阵列(最大波长为470 nm)。作为对照,他们在蓝光暴露前10天,在两个小时的时间里暴露在红光(最大波长= 640 nm)下。尽管样本量不大,但暴露在蓝色led下已经显示出对这些AD患者的睡眠质量和中位体温峰值的影响。与暴露于红色led相比,暴露于蓝色led后,中位体温峰值延迟了约2小时,睡眠质量得到改善。这项初步研究表明,光,特别是led,可以在帮助AD患者调节昼夜节律功能方面做出重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral sensitivity of the circadian system
Light exposure regulates several circadian functions in normal humans including the sleep-wake cycle. Individuals with Alzheimer’s Disease (AD) often do not have regular patterns of activity and rest, but, rather, experience random periods of sleep and agitation during both day and night. Bright light during the day and darkness at night has been shown to consolidate activity periods during the day and rest periods at night in AD patients. The important characteristics of bright light exposure (quantity, spectrum, distribution, timing and duration) for achieving these results in AD patients is not yet understood. Recent research has shown that moderate (~18 lx at the cornea) blue (~470 nm) light is effective at suppressing melatonin in normal humans. It was hypothesized that blue light applied just before AD patients retire to their beds for the night would have a measurable impact on their behavior. A pilot study was conducted for 30 days in a senior health care facility using four individuals diagnosed with mild to moderate levels of dementia. Four AD patients were exposed to arrays of blue light from light emitting diodes (max wavelength = 470 nm) in two-hour sessions (18:00 to 20:00 hours) for 10 days. As a control, they were exposed to red light (max wavelength = 640 nm) in two-hour sessions for 10 days prior to the blue light exposure. Despite the modest sample size, exposure to blue LEDs has shown to affect sleep quality and median body temperature peak of these AD patients. Median body temperature peak was delayed by approximately 2 hours after exposure to blue LEDs compared to exposure to red LEDs and sleep quality was improved. This pilot study demonstrated that light, especially LEDs, can be an important contribution to helping AD patients regulate their circadian functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural network for image-to-image control of optical tweezers Atmospheric turbulence simulation using liquid crystal spatial light modulators Atmospheric simulation using a liquid crystal wavefront-controlling device Spectral sensitivity of the circadian system Generating entangled states of two ququarts using linear optical elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1