基于时空信息的面部表情主动跟踪与克隆

L. Yin, A. Basu, Matt T. Yourst
{"title":"基于时空信息的面部表情主动跟踪与克隆","authors":"L. Yin, A. Basu, Matt T. Yourst","doi":"10.1109/TAI.2002.1180824","DOIUrl":null,"url":null,"abstract":"This paper presents a new method to analyze and synthesize facial expressions, in which a spatio-temporal gradient based method (i.e., optical flow) is exploited to estimate the movement of facial feature points. We proposed a method (called motion correlation) to improve the conventional block correlation method for obtaining motion vectors. The tracking of facial expressions under an active camera is addressed. With the motion vectors estimated, a facial expression can be cloned by adjusting the existing 3D facial model, or synthesized using different facial models. The experimental results demonstrate that the approach proposed is feasible for applications such as low bit rate video coding and face animation.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Active tracking and cloning of facial expressions using spatio-temporal information\",\"authors\":\"L. Yin, A. Basu, Matt T. Yourst\",\"doi\":\"10.1109/TAI.2002.1180824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method to analyze and synthesize facial expressions, in which a spatio-temporal gradient based method (i.e., optical flow) is exploited to estimate the movement of facial feature points. We proposed a method (called motion correlation) to improve the conventional block correlation method for obtaining motion vectors. The tracking of facial expressions under an active camera is addressed. With the motion vectors estimated, a facial expression can be cloned by adjusting the existing 3D facial model, or synthesized using different facial models. The experimental results demonstrate that the approach proposed is feasible for applications such as low bit rate video coding and face animation.\",\"PeriodicalId\":197064,\"journal\":{\"name\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.2002.1180824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的面部表情分析与合成方法,利用基于时空梯度的方法(即光流)来估计面部特征点的运动。我们提出了一种运动相关方法来改进传统的块相关方法来获取运动向量。解决了在活动摄像头下的面部表情跟踪问题。在运动矢量估计的基础上,通过调整现有的三维面部模型克隆出一个面部表情,或者使用不同的面部模型合成一个面部表情。实验结果表明,该方法在低码率视频编码和人脸动画等应用中是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active tracking and cloning of facial expressions using spatio-temporal information
This paper presents a new method to analyze and synthesize facial expressions, in which a spatio-temporal gradient based method (i.e., optical flow) is exploited to estimate the movement of facial feature points. We proposed a method (called motion correlation) to improve the conventional block correlation method for obtaining motion vectors. The tracking of facial expressions under an active camera is addressed. With the motion vectors estimated, a facial expression can be cloned by adjusting the existing 3D facial model, or synthesized using different facial models. The experimental results demonstrate that the approach proposed is feasible for applications such as low bit rate video coding and face animation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine learning for software engineering: case studies in software reuse Active tracking and cloning of facial expressions using spatio-temporal information Fusing cooperative technical-specification knowledge components Ontology construction for information selection An intelligent brokering system to support multi-agent Web-based 4/sup th/-party logistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1