基于改进contourlet变换的图像融合

L. Wang, Chengjin Li, Xunjie Zhao, Xiaoli Liu
{"title":"基于改进contourlet变换的图像融合","authors":"L. Wang, Chengjin Li, Xunjie Zhao, Xiaoli Liu","doi":"10.1117/12.895522","DOIUrl":null,"url":null,"abstract":"The purpose of image fusion is to obtain an iamge from multiple images, this image should be able to reflect the important information of all original images. Contourlet transform, not only has characteristics of multiresolution locality and critical sampling which wavelet has but also has the characteristics of multiple decomposition directions and anisotropy which wavelets lacking. Energy is a statistical parameter of describe the texture feature. So we apply the Max Energy and Contourlet transform combined for image fusion. Entropy expreses the average amount of information. The distribution of standard deviation reflects the degree of dispersion of the image.The average gradient reflects the clarity of the image, the contrast of small details and the feature of texture transform. Contrast with wavelet transform, laplace transform, weighted transform, the traditional of contourlet transform, on evaluation by Entropy, standard deviation and average gradient, experimental results from this algorithms for fusion with infrared image and visual image were better than other algorithms.","PeriodicalId":355017,"journal":{"name":"Photoelectronic Detection and Imaging","volume":"702 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image fusion base on improved contourlet transform\",\"authors\":\"L. Wang, Chengjin Li, Xunjie Zhao, Xiaoli Liu\",\"doi\":\"10.1117/12.895522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of image fusion is to obtain an iamge from multiple images, this image should be able to reflect the important information of all original images. Contourlet transform, not only has characteristics of multiresolution locality and critical sampling which wavelet has but also has the characteristics of multiple decomposition directions and anisotropy which wavelets lacking. Energy is a statistical parameter of describe the texture feature. So we apply the Max Energy and Contourlet transform combined for image fusion. Entropy expreses the average amount of information. The distribution of standard deviation reflects the degree of dispersion of the image.The average gradient reflects the clarity of the image, the contrast of small details and the feature of texture transform. Contrast with wavelet transform, laplace transform, weighted transform, the traditional of contourlet transform, on evaluation by Entropy, standard deviation and average gradient, experimental results from this algorithms for fusion with infrared image and visual image were better than other algorithms.\",\"PeriodicalId\":355017,\"journal\":{\"name\":\"Photoelectronic Detection and Imaging\",\"volume\":\"702 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoelectronic Detection and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.895522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoelectronic Detection and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.895522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像融合的目的是从多个图像中得到一个图像,这个图像应该能够反映所有原始图像的重要信息。Contourlet变换既具有小波所具有的多分辨率局域性和临界采样的特点,又具有小波所缺乏的多分解方向和各向异性的特点。能量是描述纹理特征的统计参数。因此,我们采用最大能量和Contourlet变换相结合的方法进行图像融合。熵表示信息的平均量。标准差的分布反映了图像的分散程度。平均梯度反映了图像的清晰度、小细节的对比度和纹理变换的特征。与小波变换、拉普拉斯变换、加权变换和传统的contourlet变换进行对比,在熵值、标准差和平均梯度等方面进行评价,实验结果表明该算法对红外图像和视觉图像的融合效果优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image fusion base on improved contourlet transform
The purpose of image fusion is to obtain an iamge from multiple images, this image should be able to reflect the important information of all original images. Contourlet transform, not only has characteristics of multiresolution locality and critical sampling which wavelet has but also has the characteristics of multiple decomposition directions and anisotropy which wavelets lacking. Energy is a statistical parameter of describe the texture feature. So we apply the Max Energy and Contourlet transform combined for image fusion. Entropy expreses the average amount of information. The distribution of standard deviation reflects the degree of dispersion of the image.The average gradient reflects the clarity of the image, the contrast of small details and the feature of texture transform. Contrast with wavelet transform, laplace transform, weighted transform, the traditional of contourlet transform, on evaluation by Entropy, standard deviation and average gradient, experimental results from this algorithms for fusion with infrared image and visual image were better than other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and characterization of radiation tolerant CMOS image sensor for space applications Measuring the steel tensile deformation based on linear CCD 3D hand and palmprint acquisition using full-field composite color fringe projection Research on surface free energy of electrowetting liquid zoom lens Research on inside surface of hollow reactor based on photoelectric detecting technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1