一些机器视觉应用的快速图像分割

E. B. Hinkle, J. Sanz
{"title":"一些机器视觉应用的快速图像分割","authors":"E. B. Hinkle, J. Sanz","doi":"10.1109/ICASSP.1987.1169665","DOIUrl":null,"url":null,"abstract":"This paper describes the use of an image contrast measure for producing binary segmentations of images in a certain class of applications. This method is well-suited for fast pipeline implementations, because the contrast measure uses only two local features in the image. To eliminate segmentation noise, we post-process the segmentations using binary morphological operations. This method has been applied to three different microelectronics inspection problems, with consistently good results, and experimental results from each of these applications are presented here. Also, we discuss this technique in terms of the theory of polynomial classifiers.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast image segmentation for some machine vision applications\",\"authors\":\"E. B. Hinkle, J. Sanz\",\"doi\":\"10.1109/ICASSP.1987.1169665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the use of an image contrast measure for producing binary segmentations of images in a certain class of applications. This method is well-suited for fast pipeline implementations, because the contrast measure uses only two local features in the image. To eliminate segmentation noise, we post-process the segmentations using binary morphological operations. This method has been applied to three different microelectronics inspection problems, with consistently good results, and experimental results from each of these applications are presented here. Also, we discuss this technique in terms of the theory of polynomial classifiers.\",\"PeriodicalId\":140810,\"journal\":{\"name\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1987.1169665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了在某一类应用中使用图像对比度度量来产生图像的二值分割。这种方法非常适合快速流水线实现,因为对比度测量只使用图像中的两个局部特征。为了消除分割噪声,我们使用二值形态学运算对分割进行后处理。该方法已应用于三种不同的微电子检测问题,具有一致的良好结果,并从这些应用的实验结果在这里提出。此外,我们还从多项式分类器理论的角度讨论了这种技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast image segmentation for some machine vision applications
This paper describes the use of an image contrast measure for producing binary segmentations of images in a certain class of applications. This method is well-suited for fast pipeline implementations, because the contrast measure uses only two local features in the image. To eliminate segmentation noise, we post-process the segmentations using binary morphological operations. This method has been applied to three different microelectronics inspection problems, with consistently good results, and experimental results from each of these applications are presented here. Also, we discuss this technique in terms of the theory of polynomial classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high resolution data-adaptive time-frequency representation A fast prediction-error detector for estimating sparse-spike sequences Some applications of mathematical morphology to range imagery Parameter estimation using the autocorrelation of the discrete Fourier transform Array signal processing with interconnected Neuron-like elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1