一种基于剩余使用寿命估计的无监督域自适应评估框架

Tilman Krokotsch, M. Knaak, C. Gühmann
{"title":"一种基于剩余使用寿命估计的无监督域自适应评估框架","authors":"Tilman Krokotsch, M. Knaak, C. Gühmann","doi":"10.1109/ICPHM49022.2020.9187058","DOIUrl":null,"url":null,"abstract":"Unsupervised Domain Adaption (DA) is an approach for adapting a data-driven model to new data without labels. Recent work on Remaining Useful Lifetime (RUL) estimation of aero engines yielded promising results for this approach. However, the current evaluation framework for DA is of limited significance when used for RUL estimation. It assumes a use case where a large number of fully degraded systems are available for adaption, which makes unsupervised DA in itself unnecessary. It is shown that the current framework overestimates adaption performance and obscures potential, negative effects of DA on performance. We propose a novel evaluation framework for unsupervised DA, specialized in RUL estimation, that takes the number of available systems and their grade of degradation into account. It enables an informed performance comparison of DA methods. We detail the framework’s capabilities on two DA methods and show that unsupervised DA delivers improved RUL estimations under real-life scenarios, as well.","PeriodicalId":148899,"journal":{"name":"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Novel Evaluation Framework for Unsupervised Domain Adaption on Remaining Useful Lifetime Estimation\",\"authors\":\"Tilman Krokotsch, M. Knaak, C. Gühmann\",\"doi\":\"10.1109/ICPHM49022.2020.9187058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised Domain Adaption (DA) is an approach for adapting a data-driven model to new data without labels. Recent work on Remaining Useful Lifetime (RUL) estimation of aero engines yielded promising results for this approach. However, the current evaluation framework for DA is of limited significance when used for RUL estimation. It assumes a use case where a large number of fully degraded systems are available for adaption, which makes unsupervised DA in itself unnecessary. It is shown that the current framework overestimates adaption performance and obscures potential, negative effects of DA on performance. We propose a novel evaluation framework for unsupervised DA, specialized in RUL estimation, that takes the number of available systems and their grade of degradation into account. It enables an informed performance comparison of DA methods. We detail the framework’s capabilities on two DA methods and show that unsupervised DA delivers improved RUL estimations under real-life scenarios, as well.\",\"PeriodicalId\":148899,\"journal\":{\"name\":\"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM49022.2020.9187058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM49022.2020.9187058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

无监督域自适应(DA)是一种使数据驱动模型适应无标签新数据的方法。最近关于航空发动机剩余使用寿命(RUL)估计的工作为这种方法取得了有希望的结果。然而,当前的数据分析评估框架在用于规则化估计时意义有限。它假设了一个用例,其中有大量完全退化的系统可供适应,这使得无监督数据处理本身变得不必要。研究表明,当前的框架高估了自适应性能,并模糊了数据处理对性能的潜在负面影响。我们提出了一种新的无监督数据分析评估框架,专门用于RUL估计,该框架考虑了可用系统的数量及其退化等级。它支持对数据处理方法进行明智的性能比较。我们详细介绍了框架在两种数据处理方法上的功能,并展示了无监督数据处理在现实场景下也提供了改进的RUL估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Evaluation Framework for Unsupervised Domain Adaption on Remaining Useful Lifetime Estimation
Unsupervised Domain Adaption (DA) is an approach for adapting a data-driven model to new data without labels. Recent work on Remaining Useful Lifetime (RUL) estimation of aero engines yielded promising results for this approach. However, the current evaluation framework for DA is of limited significance when used for RUL estimation. It assumes a use case where a large number of fully degraded systems are available for adaption, which makes unsupervised DA in itself unnecessary. It is shown that the current framework overestimates adaption performance and obscures potential, negative effects of DA on performance. We propose a novel evaluation framework for unsupervised DA, specialized in RUL estimation, that takes the number of available systems and their grade of degradation into account. It enables an informed performance comparison of DA methods. We detail the framework’s capabilities on two DA methods and show that unsupervised DA delivers improved RUL estimations under real-life scenarios, as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Evaluation Framework for Unsupervised Domain Adaption on Remaining Useful Lifetime Estimation Bayesian Neural Network Based Method of Remaining Useful Life Prediction and Uncertainty Quantification for Aircraft Engine Semi-Supervised Learning Approach for Optimizing Condition-based-Maintenance (CBM) Decisions Designing a Reliability Quick Switching Sampling Plan based on the Lifetime Performance Index Automated detection of textured-surface defects using UNet-based semantic segmentation network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1