钢管冷轧机主传动的动态控制

S. Rakhmanov
{"title":"钢管冷轧机主传动的动态控制","authors":"S. Rakhmanov","doi":"10.32339/0135-5910-2019-3-355-364","DOIUrl":null,"url":null,"abstract":"Elimination of unstable and critical states of deformed systems of pipes pilger cold rolling mill, heavy-loaded equipment of which functions under conditionsof increase dynamic loads, is mainly intended for mechanic system dynamics stabilization until the accepted level of loading. Active mechanicties in the initial dynamic model revealed, which stipulate the demonstration of pronounced parametric processes in the studied system of pipes cold rolling mill main driver. Analysis of reasons of parametric oscillations originating carried out for systems of pipes cold rolling mill main driver. Zones of dynamic instability of mechanic system functioning according to Eins–Strett diagram determined, that enable to make the choice of passive optimal rolling regimes at the stage of technological processes designing of pipes pilger cold rolling.A system of active control by main driver of pipes cold rolling mill elaborated based on its mathematical model. A structure of optimal control by angular oscillations driver line elements of pipes cold rolling mill selected and parameters ofactive control impacts of the automated servo control system determined. A mechanism of optimal control by dynamic state ofdriver line elements of pipes cold rolling mill proposed. Also proposed an outline of critical and instablestates elimination for the main driver line driver of pipes cold rolling mill, which is realized by means of adaptive active automated servo control facility. The modernized main driver line of pipes cold rolling mill is equipped by facilities and control systems, enabling to switch the initial mechanic system from a critical state into a zone ofdesired states in a servo regime. Sensors of threshold moments level of elasticity forcesare installed on the drive shaft of main driver of pipes cold rolling mill. During the drive shaft angular elastic oscillations, comprising of actual and desired parameters of mechanicsystem is made based on sensors signals. Next, a correspondent control impact is formed based on algorithm embedded into the electric drive servo control system. When the displayed point of the drive shaft reaches the desired area of system dynamic stability, the active drive control is switched off. If further the disturbing load, applied from the side of deformation seat, makes the drive line dynamic characteristics off the desired status, then the dynamic system control process is repeated in anautomated mode. Reliability of the results received confirmed by calculation example and experiments at the main driver of pipes cold rolling mill ХПТ-32.","PeriodicalId":259995,"journal":{"name":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics control in pipe cold rolling mill main drive\",\"authors\":\"S. Rakhmanov\",\"doi\":\"10.32339/0135-5910-2019-3-355-364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elimination of unstable and critical states of deformed systems of pipes pilger cold rolling mill, heavy-loaded equipment of which functions under conditionsof increase dynamic loads, is mainly intended for mechanic system dynamics stabilization until the accepted level of loading. Active mechanicties in the initial dynamic model revealed, which stipulate the demonstration of pronounced parametric processes in the studied system of pipes cold rolling mill main driver. Analysis of reasons of parametric oscillations originating carried out for systems of pipes cold rolling mill main driver. Zones of dynamic instability of mechanic system functioning according to Eins–Strett diagram determined, that enable to make the choice of passive optimal rolling regimes at the stage of technological processes designing of pipes pilger cold rolling.A system of active control by main driver of pipes cold rolling mill elaborated based on its mathematical model. A structure of optimal control by angular oscillations driver line elements of pipes cold rolling mill selected and parameters ofactive control impacts of the automated servo control system determined. A mechanism of optimal control by dynamic state ofdriver line elements of pipes cold rolling mill proposed. Also proposed an outline of critical and instablestates elimination for the main driver line driver of pipes cold rolling mill, which is realized by means of adaptive active automated servo control facility. The modernized main driver line of pipes cold rolling mill is equipped by facilities and control systems, enabling to switch the initial mechanic system from a critical state into a zone ofdesired states in a servo regime. Sensors of threshold moments level of elasticity forcesare installed on the drive shaft of main driver of pipes cold rolling mill. During the drive shaft angular elastic oscillations, comprising of actual and desired parameters of mechanicsystem is made based on sensors signals. Next, a correspondent control impact is formed based on algorithm embedded into the electric drive servo control system. When the displayed point of the drive shaft reaches the desired area of system dynamic stability, the active drive control is switched off. If further the disturbing load, applied from the side of deformation seat, makes the drive line dynamic characteristics off the desired status, then the dynamic system control process is repeated in anautomated mode. Reliability of the results received confirmed by calculation example and experiments at the main driver of pipes cold rolling mill ХПТ-32.\",\"PeriodicalId\":259995,\"journal\":{\"name\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32339/0135-5910-2019-3-355-364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32339/0135-5910-2019-3-355-364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钢管柱冷轧机是在动态载荷增大的条件下运行的重载设备,其变形系统的不稳定和临界状态的消除主要是为了使机械系统的动态稳定,直至达到可接受的载荷水平。在初始动力学模型中揭示了主动机制,规定了所研究的管道冷轧机主驱动系统具有明显的参数化过程。对钢管冷轧机主传动系统产生参数振荡的原因进行了分析。确定了按Eins-Strett图作用的机械系统的动态不稳定区域,为钢管柱冷轧工艺设计阶段被动优化轧制方案的选择提供了依据。在建立冷轧机主驱动主动控制系统数学模型的基础上,阐述了一种主驱动主动控制系统。选取了钢管冷轧机的角振荡驱动线元优化控制结构,确定了主动控制参数对自动伺服控制系统的影响。提出了一种管材冷轧机驱动线元动态最优控制机制。提出了用自适应主动自动伺服控制装置实现冷轧管机主驱动线驱动的临界和不稳定消除的概要。现代化的管材冷轧机主驱动线配备了相应的设备和控制系统,能够将初始机械系统从临界状态切换到伺服状态的期望状态区。在钢管冷轧机主驱动器的传动轴上安装了弹性力阈值力矩级传感器。在传动轴角弹性振荡过程中,根据传感器信号得到由机械系统实际参数和期望参数组成的参数。其次,基于嵌入电驱动伺服控制系统的算法,形成相应的控制冲击。当传动轴的显示点达到系统动态稳定的期望区域时,主动驱动控制被关闭。如果从变形座侧面施加的扰动载荷进一步使驱动线的动态特性偏离预期状态,则以自动化方式重复动态系统控制过程。通过算例和在冷轧管材主机厂ХПТ-32上的试验,验证了所得结果的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics control in pipe cold rolling mill main drive
Elimination of unstable and critical states of deformed systems of pipes pilger cold rolling mill, heavy-loaded equipment of which functions under conditionsof increase dynamic loads, is mainly intended for mechanic system dynamics stabilization until the accepted level of loading. Active mechanicties in the initial dynamic model revealed, which stipulate the demonstration of pronounced parametric processes in the studied system of pipes cold rolling mill main driver. Analysis of reasons of parametric oscillations originating carried out for systems of pipes cold rolling mill main driver. Zones of dynamic instability of mechanic system functioning according to Eins–Strett diagram determined, that enable to make the choice of passive optimal rolling regimes at the stage of technological processes designing of pipes pilger cold rolling.A system of active control by main driver of pipes cold rolling mill elaborated based on its mathematical model. A structure of optimal control by angular oscillations driver line elements of pipes cold rolling mill selected and parameters ofactive control impacts of the automated servo control system determined. A mechanism of optimal control by dynamic state ofdriver line elements of pipes cold rolling mill proposed. Also proposed an outline of critical and instablestates elimination for the main driver line driver of pipes cold rolling mill, which is realized by means of adaptive active automated servo control facility. The modernized main driver line of pipes cold rolling mill is equipped by facilities and control systems, enabling to switch the initial mechanic system from a critical state into a zone ofdesired states in a servo regime. Sensors of threshold moments level of elasticity forcesare installed on the drive shaft of main driver of pipes cold rolling mill. During the drive shaft angular elastic oscillations, comprising of actual and desired parameters of mechanicsystem is made based on sensors signals. Next, a correspondent control impact is formed based on algorithm embedded into the electric drive servo control system. When the displayed point of the drive shaft reaches the desired area of system dynamic stability, the active drive control is switched off. If further the disturbing load, applied from the side of deformation seat, makes the drive line dynamic characteristics off the desired status, then the dynamic system control process is repeated in anautomated mode. Reliability of the results received confirmed by calculation example and experiments at the main driver of pipes cold rolling mill ХПТ-32.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of technology schemes for the production of cast composite functional materials Forecasting of industrial coke quality at JSC EVRAZ NTMK based on data of passive industrial experiment. Report 1. Forecasting of CSR and CRI of industrial coke Recognition of surface defects of rolled steel in sheets by application micro-X-ray spectral analysis Influence of particles size distribution on the carbon content throughout sinter bed height Study of possibility of obtaining alternative binders from production wastes for filling man-caused voids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1