{"title":"用数据和物理驱动的算法打破光子创新周期","authors":"Jonathan A. Fan","doi":"10.1117/12.2595667","DOIUrl":null,"url":null,"abstract":"I will discuss the role of network architecture in the GLOnet inverse optimization platform, in which the global optimization process is reframed as the training of a generative neural network. I will show how a properly selected network architecture can smoothen the design space and how the architecture can be tailored based on the type and dimensionality of the design problem. I will also discuss new methods in which neural networks can serve as high speed surrogate Maxwell solvers capable of aiding the inverse design process. These hybrid physics- and data-driven concepts can apply to a broad range of nanophotonics systems.","PeriodicalId":389503,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2021","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disrupting the photonics innovation cycle with data- and physics-driven algorithms\",\"authors\":\"Jonathan A. Fan\",\"doi\":\"10.1117/12.2595667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I will discuss the role of network architecture in the GLOnet inverse optimization platform, in which the global optimization process is reframed as the training of a generative neural network. I will show how a properly selected network architecture can smoothen the design space and how the architecture can be tailored based on the type and dimensionality of the design problem. I will also discuss new methods in which neural networks can serve as high speed surrogate Maxwell solvers capable of aiding the inverse design process. These hybrid physics- and data-driven concepts can apply to a broad range of nanophotonics systems.\",\"PeriodicalId\":389503,\"journal\":{\"name\":\"Metamaterials, Metadevices, and Metasystems 2021\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metamaterials, Metadevices, and Metasystems 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2595667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials, Metadevices, and Metasystems 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2595667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Disrupting the photonics innovation cycle with data- and physics-driven algorithms
I will discuss the role of network architecture in the GLOnet inverse optimization platform, in which the global optimization process is reframed as the training of a generative neural network. I will show how a properly selected network architecture can smoothen the design space and how the architecture can be tailored based on the type and dimensionality of the design problem. I will also discuss new methods in which neural networks can serve as high speed surrogate Maxwell solvers capable of aiding the inverse design process. These hybrid physics- and data-driven concepts can apply to a broad range of nanophotonics systems.