基于卷积神经网络(CNN)和迁移学习的Hoya植物识别

Siti Kania Kushadiani, Budi Nugroho, S. Rahayu, G. Laxmi, Toto Haryanto
{"title":"基于卷积神经网络(CNN)和迁移学习的Hoya植物识别","authors":"Siti Kania Kushadiani, Budi Nugroho, S. Rahayu, G. Laxmi, Toto Haryanto","doi":"10.1145/3575882.3575917","DOIUrl":null,"url":null,"abstract":"Indonesia has the highest species diversity of the Hoya plant. The genus is increasingly popular due to the beauty of the flowers and leaves, and the number of hobbyists is still increasing. As the number of species and cultivar is increasing during cultivation, the identification of each species or cultivar then become problematic for people and hobbyist. An easy and quick identification system is urgently needed, especially the application embedded in the android or IOS system. This study aimed to build a Hoya identification model using the Convolutional Neural Network (CNN) to make it easier for Hoya determination. The resulting identification model identified Hoya well, with an accuracy of 90.476%.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Hoya Plant using Convolutional Neural Network (CNN) and Transfer Learning\",\"authors\":\"Siti Kania Kushadiani, Budi Nugroho, S. Rahayu, G. Laxmi, Toto Haryanto\",\"doi\":\"10.1145/3575882.3575917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indonesia has the highest species diversity of the Hoya plant. The genus is increasingly popular due to the beauty of the flowers and leaves, and the number of hobbyists is still increasing. As the number of species and cultivar is increasing during cultivation, the identification of each species or cultivar then become problematic for people and hobbyist. An easy and quick identification system is urgently needed, especially the application embedded in the android or IOS system. This study aimed to build a Hoya identification model using the Convolutional Neural Network (CNN) to make it easier for Hoya determination. The resulting identification model identified Hoya well, with an accuracy of 90.476%.\",\"PeriodicalId\":367340,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575882.3575917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

印度尼西亚的Hoya植物物种多样性最高。由于花和叶的美丽,该属越来越受欢迎,爱好者的数量仍在增加。随着栽培过程中品种和栽培品种数量的增加,每个品种或栽培品种的鉴定对人们和爱好者来说都是一个问题。一个简单快速的识别系统是迫切需要的,尤其是嵌入在android或IOS系统中的应用。本研究旨在利用卷积神经网络(CNN)建立Hoya识别模型,使Hoya的确定更加容易。所得识别模型对Hoya的识别效果较好,准确率为90.476%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Hoya Plant using Convolutional Neural Network (CNN) and Transfer Learning
Indonesia has the highest species diversity of the Hoya plant. The genus is increasingly popular due to the beauty of the flowers and leaves, and the number of hobbyists is still increasing. As the number of species and cultivar is increasing during cultivation, the identification of each species or cultivar then become problematic for people and hobbyist. An easy and quick identification system is urgently needed, especially the application embedded in the android or IOS system. This study aimed to build a Hoya identification model using the Convolutional Neural Network (CNN) to make it easier for Hoya determination. The resulting identification model identified Hoya well, with an accuracy of 90.476%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network Parallel Programming in Finite Difference Method to Solve Turing's Model of Spot Pattern Identification of Hoya Plant using Convolutional Neural Network (CNN) and Transfer Learning Android-based Forest Fire Danger Rating Information System for Early Prevention of Forest / Land fires Leak Detection using Non-Intrusive Ultrasonic Water Flowmeter Sensor in Water Distribution Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1