{"title":"利用神经网络方法计算二次优化问题","authors":"A. Wu, P. Tam","doi":"10.1109/ICCIMA.1999.798504","DOIUrl":null,"url":null,"abstract":"According to the basic optimization principle of artificial neural networks, a novel kind of neural network model for solving the quadratic programming problem is presented. The methodology is based on the Lagrange multiplier theory in optimization and seeks to provide solutions satisfying the necessary conditions of optimality. The equilibrium point of the network satisfies the Kuhn-Tucker condition for the problem. The stability and convergency of the neural network is investigated and the strategy of the neural optimization is discussed. The feasibility of the neural network method is verified with computation examples. Results of the simulation of the neural network to solve optimum problems are presented to illustrate the computational power of the neural network method.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using neural network method computes quadratic optimization problems\",\"authors\":\"A. Wu, P. Tam\",\"doi\":\"10.1109/ICCIMA.1999.798504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the basic optimization principle of artificial neural networks, a novel kind of neural network model for solving the quadratic programming problem is presented. The methodology is based on the Lagrange multiplier theory in optimization and seeks to provide solutions satisfying the necessary conditions of optimality. The equilibrium point of the network satisfies the Kuhn-Tucker condition for the problem. The stability and convergency of the neural network is investigated and the strategy of the neural optimization is discussed. The feasibility of the neural network method is verified with computation examples. Results of the simulation of the neural network to solve optimum problems are presented to illustrate the computational power of the neural network method.\",\"PeriodicalId\":110736,\"journal\":{\"name\":\"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIMA.1999.798504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据人工神经网络的基本优化原理,提出了一种求解二次规划问题的新型神经网络模型。该方法以最优化中的拉格朗日乘数理论为基础,力求提供满足最优性必要条件的解。网络的平衡点满足问题的Kuhn-Tucker条件。研究了神经网络的稳定性和收敛性,讨论了神经网络的优化策略。通过算例验证了神经网络方法的可行性。给出了神经网络求解最优问题的仿真结果,说明了神经网络方法的计算能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using neural network method computes quadratic optimization problems
According to the basic optimization principle of artificial neural networks, a novel kind of neural network model for solving the quadratic programming problem is presented. The methodology is based on the Lagrange multiplier theory in optimization and seeks to provide solutions satisfying the necessary conditions of optimality. The equilibrium point of the network satisfies the Kuhn-Tucker condition for the problem. The stability and convergency of the neural network is investigated and the strategy of the neural optimization is discussed. The feasibility of the neural network method is verified with computation examples. Results of the simulation of the neural network to solve optimum problems are presented to illustrate the computational power of the neural network method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modular rough fuzzy MLP: evolutionary design Indian language multimedia and information retrieval An image understanding system for various images based on multi-agent architecture End-to-end simulation of VBR traffic over ATM networks using CIPP network traffic model Fuzzy approach to recognize handwritten Tamil characters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1