{"title":"线性感应电动机的离散时间神经网络控制","authors":"M. Hernández-González, E. Sánchez, A. Loukianov","doi":"10.1109/ISIC.2008.4635945","DOIUrl":null,"url":null,"abstract":"This paper presents a discrete-time control for a linear induction motor (LIM). First, an identifier is proposed with a nonlinear block controllable form (NBC) structure. This identifier is based on a discrete-time high order neural network trained on-line with an extended Kalman filter (EKF)-based algorithm. Then, a sliding mode control is used to achieve the purpose of tracking velocity and magnitude flux. The neural control performance is illustrated via simulations.","PeriodicalId":342070,"journal":{"name":"2008 IEEE International Symposium on Intelligent Control","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Discrete-time Neural Network Control for a Linear Induction Motor\",\"authors\":\"M. Hernández-González, E. Sánchez, A. Loukianov\",\"doi\":\"10.1109/ISIC.2008.4635945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a discrete-time control for a linear induction motor (LIM). First, an identifier is proposed with a nonlinear block controllable form (NBC) structure. This identifier is based on a discrete-time high order neural network trained on-line with an extended Kalman filter (EKF)-based algorithm. Then, a sliding mode control is used to achieve the purpose of tracking velocity and magnitude flux. The neural control performance is illustrated via simulations.\",\"PeriodicalId\":342070,\"journal\":{\"name\":\"2008 IEEE International Symposium on Intelligent Control\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2008.4635945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2008.4635945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete-time Neural Network Control for a Linear Induction Motor
This paper presents a discrete-time control for a linear induction motor (LIM). First, an identifier is proposed with a nonlinear block controllable form (NBC) structure. This identifier is based on a discrete-time high order neural network trained on-line with an extended Kalman filter (EKF)-based algorithm. Then, a sliding mode control is used to achieve the purpose of tracking velocity and magnitude flux. The neural control performance is illustrated via simulations.