智能电网实时仿真中的数据通信接口:挑战与解决方案

Mehrdad Sheikholeslami, Zuyi Li
{"title":"智能电网实时仿真中的数据通信接口:挑战与解决方案","authors":"Mehrdad Sheikholeslami, Zuyi Li","doi":"10.1109/SmartGridComm51999.2021.9632324","DOIUrl":null,"url":null,"abstract":"This paper presents the challenges and also suggests solutions associated with developing data communication interfaces between real-time digital simulator (RTDS) and hardware or software devices under study. While RTDS supports a wide range of standard and well-established communication protocols, employing such communication protocols generally increases the cost of the educational project as these standard communication protocols require licenses as well as third-party hardware and software devices to act as gateways. The need for these licenses and third-party hardware and software devices adds to the total cost of the project and also requires additional training. This paper provides two sets of cost-effective data interface solutions for local and remote networks based on the lessons learned from different projects that the authors were involved with. These practical solutions are especially useful for projects that involve multiple partners located remotely that are facing logistic challenges due to the Covid-19 pandemic.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions\",\"authors\":\"Mehrdad Sheikholeslami, Zuyi Li\",\"doi\":\"10.1109/SmartGridComm51999.2021.9632324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the challenges and also suggests solutions associated with developing data communication interfaces between real-time digital simulator (RTDS) and hardware or software devices under study. While RTDS supports a wide range of standard and well-established communication protocols, employing such communication protocols generally increases the cost of the educational project as these standard communication protocols require licenses as well as third-party hardware and software devices to act as gateways. The need for these licenses and third-party hardware and software devices adds to the total cost of the project and also requires additional training. This paper provides two sets of cost-effective data interface solutions for local and remote networks based on the lessons learned from different projects that the authors were involved with. These practical solutions are especially useful for projects that involve multiple partners located remotely that are facing logistic challenges due to the Covid-19 pandemic.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9632324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了开发实时数字模拟器(RTDS)与所研究的硬件或软件设备之间的数据通信接口所面临的挑战,并提出了解决方案。虽然RTDS支持广泛的标准和完善的通信协议,但采用此类通信协议通常会增加教育项目的成本,因为这些标准通信协议需要许可证以及第三方硬件和软件设备作为网关。对这些许可证和第三方硬件和软件设备的需求增加了项目的总成本,还需要额外的培训。本文根据作者参与的不同项目的经验教训,为本地和远程网络提供了两套经济有效的数据接口解决方案。这些实用的解决方案对于涉及多个远程合作伙伴的项目特别有用,这些项目因Covid-19大流行而面临物流挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions
This paper presents the challenges and also suggests solutions associated with developing data communication interfaces between real-time digital simulator (RTDS) and hardware or software devices under study. While RTDS supports a wide range of standard and well-established communication protocols, employing such communication protocols generally increases the cost of the educational project as these standard communication protocols require licenses as well as third-party hardware and software devices to act as gateways. The need for these licenses and third-party hardware and software devices adds to the total cost of the project and also requires additional training. This paper provides two sets of cost-effective data interface solutions for local and remote networks based on the lessons learned from different projects that the authors were involved with. These practical solutions are especially useful for projects that involve multiple partners located remotely that are facing logistic challenges due to the Covid-19 pandemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1