用不同核测量Hilbert-Schmidt独立准则

Chenge Hu, Huaqing Zhang, Yuyu Zhou, Ruixin Guan
{"title":"用不同核测量Hilbert-Schmidt独立准则","authors":"Chenge Hu, Huaqing Zhang, Yuyu Zhou, Ruixin Guan","doi":"10.1109/CSAIEE54046.2021.9543403","DOIUrl":null,"url":null,"abstract":"Hilbert-Schmidt independence criterion (HSIC) which is a kernel-based method for testing statistical dependence between two random variables. It is widely applied in a variety of areas. However, this approach comes with a question of the selection of kernel functions. In this paper, we conduct an experiment using the forest fire data from UCI in the context of independence test, contrasting four commonly used kernel functions: Linear kernels, Gaussian kernels, Brownian kernels, Matern kernels. Through comparing p-value and rejection rate of hypothesis test we constructed; it is shown that the different choices in associated kernel function of HSIC give comparable performance on results.","PeriodicalId":376014,"journal":{"name":"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring Hilbert-Schmidt Independence Criterion with Different Kernels\",\"authors\":\"Chenge Hu, Huaqing Zhang, Yuyu Zhou, Ruixin Guan\",\"doi\":\"10.1109/CSAIEE54046.2021.9543403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hilbert-Schmidt independence criterion (HSIC) which is a kernel-based method for testing statistical dependence between two random variables. It is widely applied in a variety of areas. However, this approach comes with a question of the selection of kernel functions. In this paper, we conduct an experiment using the forest fire data from UCI in the context of independence test, contrasting four commonly used kernel functions: Linear kernels, Gaussian kernels, Brownian kernels, Matern kernels. Through comparing p-value and rejection rate of hypothesis test we constructed; it is shown that the different choices in associated kernel function of HSIC give comparable performance on results.\",\"PeriodicalId\":376014,\"journal\":{\"name\":\"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAIEE54046.2021.9543403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAIEE54046.2021.9543403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

希尔伯特-施密特独立准则(Hilbert-Schmidt independence criterion, HSIC)是一种基于核函数的检验两个随机变量之间统计相关性的方法。它被广泛应用于各种领域。然而,这种方法带来了核函数选择的问题。本文利用UCI的森林火灾数据,在独立性检验的背景下进行了实验,对比了四种常用的核函数:线性核函数、高斯核函数、布朗核函数和Matern核函数。通过比较假设检验的p值和拒绝率,我们构造了;结果表明,HSIC相关核函数的不同选择对结果的影响是相当的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring Hilbert-Schmidt Independence Criterion with Different Kernels
Hilbert-Schmidt independence criterion (HSIC) which is a kernel-based method for testing statistical dependence between two random variables. It is widely applied in a variety of areas. However, this approach comes with a question of the selection of kernel functions. In this paper, we conduct an experiment using the forest fire data from UCI in the context of independence test, contrasting four commonly used kernel functions: Linear kernels, Gaussian kernels, Brownian kernels, Matern kernels. Through comparing p-value and rejection rate of hypothesis test we constructed; it is shown that the different choices in associated kernel function of HSIC give comparable performance on results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Res-Attention Net: An Image Dehazing Network Teacher-Student Network for Low-quality Remote Sensing Ship Detection Optimization of GNSS Signals Acquisition Algorithm Complexity Using Comb Decimation Filter Basic Ensemble Learning of Encoder Representations from Transformer for Disaster-mentioning Tweets Classification Measuring Hilbert-Schmidt Independence Criterion with Different Kernels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1