{"title":"用于手指康复的手外骨骼的研制与评价*","authors":"Haiyi Luo, Zhenyu Sun, Xiaobei Jing, Bairui Shu, Shixiong Chen, Xu Yong, H. Yokoi","doi":"10.1109/ROBIO55434.2022.10011966","DOIUrl":null,"url":null,"abstract":"Exoskeleton robots are now prevalent in hand rehabilitation medical training, and they can effectively drive a variety of rehabilitative movements in a hand that has lost its motor ability. To adapt to the hand's physiological structure and motion characteristics, a hybrid-driven exoskeleton hand based on tendon rope and linkage and its validation experiments are proposed in this paper. The exoskeleton hand can assist one to five fingers independently or even assist a joint alone. Wearing the robot retains the physiological touch of the hand to the maximum extent, which is beneficial to rehabilitation. In addition, patients can also carry out rehabilitation training independently, and the control mode is simple and practical. To verify whether the exoskeleton can reach the grip standard of healthy hands, the Leap Motion Controller is also used to conduct experimental verification of finger movement wearing the exoskeleton. The results show that the maximum average differences between the angles of the finger flexion motion joints (MCP and PIP) with and without the exoskeleton are 10.33 degrees and 11.06 degrees. It was verified that the exoskeleton could meet the requirements of finger flexion and extension for assisted motion within a specific error range.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and evaluation of a hand exoskeleton for finger rehabilitation*\",\"authors\":\"Haiyi Luo, Zhenyu Sun, Xiaobei Jing, Bairui Shu, Shixiong Chen, Xu Yong, H. Yokoi\",\"doi\":\"10.1109/ROBIO55434.2022.10011966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exoskeleton robots are now prevalent in hand rehabilitation medical training, and they can effectively drive a variety of rehabilitative movements in a hand that has lost its motor ability. To adapt to the hand's physiological structure and motion characteristics, a hybrid-driven exoskeleton hand based on tendon rope and linkage and its validation experiments are proposed in this paper. The exoskeleton hand can assist one to five fingers independently or even assist a joint alone. Wearing the robot retains the physiological touch of the hand to the maximum extent, which is beneficial to rehabilitation. In addition, patients can also carry out rehabilitation training independently, and the control mode is simple and practical. To verify whether the exoskeleton can reach the grip standard of healthy hands, the Leap Motion Controller is also used to conduct experimental verification of finger movement wearing the exoskeleton. The results show that the maximum average differences between the angles of the finger flexion motion joints (MCP and PIP) with and without the exoskeleton are 10.33 degrees and 11.06 degrees. It was verified that the exoskeleton could meet the requirements of finger flexion and extension for assisted motion within a specific error range.\",\"PeriodicalId\":151112,\"journal\":{\"name\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO55434.2022.10011966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10011966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development and evaluation of a hand exoskeleton for finger rehabilitation*
Exoskeleton robots are now prevalent in hand rehabilitation medical training, and they can effectively drive a variety of rehabilitative movements in a hand that has lost its motor ability. To adapt to the hand's physiological structure and motion characteristics, a hybrid-driven exoskeleton hand based on tendon rope and linkage and its validation experiments are proposed in this paper. The exoskeleton hand can assist one to five fingers independently or even assist a joint alone. Wearing the robot retains the physiological touch of the hand to the maximum extent, which is beneficial to rehabilitation. In addition, patients can also carry out rehabilitation training independently, and the control mode is simple and practical. To verify whether the exoskeleton can reach the grip standard of healthy hands, the Leap Motion Controller is also used to conduct experimental verification of finger movement wearing the exoskeleton. The results show that the maximum average differences between the angles of the finger flexion motion joints (MCP and PIP) with and without the exoskeleton are 10.33 degrees and 11.06 degrees. It was verified that the exoskeleton could meet the requirements of finger flexion and extension for assisted motion within a specific error range.