软件适应的案例研究

G. Valetto, G. Kaiser
{"title":"软件适应的案例研究","authors":"G. Valetto, G. Kaiser","doi":"10.1145/582128.582142","DOIUrl":null,"url":null,"abstract":"We attach a feedback-control-loop infrastructure to an existing target system, to continually monitor and dynamically adapt its activities and performance. (This approach could also be applied to \"new\" systems, as an alternative to \"building in\" adaptation facilities, but we do not address that here.) Our infrastructure consists of multiple layers, with the objectives of 1. probing, measuring and reporting of activity and state during the execution of the target system among its components and connectors; 2. gauging, analysis and interpretation of the reported events; and 3. whenever necessary, feedback onto the probes and gauges, to focus them (e.g., drill deeper), or onto the running target system, to direct its automatic adjustment and reconfiguration. We report on our successful experience using this approach in the dynamic adaptation of a large-scale commercial application requiring both coarse and fine-grained modifications.","PeriodicalId":326554,"journal":{"name":"Workshop on Self-Healing Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"A case study in software adaptation\",\"authors\":\"G. Valetto, G. Kaiser\",\"doi\":\"10.1145/582128.582142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We attach a feedback-control-loop infrastructure to an existing target system, to continually monitor and dynamically adapt its activities and performance. (This approach could also be applied to \\\"new\\\" systems, as an alternative to \\\"building in\\\" adaptation facilities, but we do not address that here.) Our infrastructure consists of multiple layers, with the objectives of 1. probing, measuring and reporting of activity and state during the execution of the target system among its components and connectors; 2. gauging, analysis and interpretation of the reported events; and 3. whenever necessary, feedback onto the probes and gauges, to focus them (e.g., drill deeper), or onto the running target system, to direct its automatic adjustment and reconfiguration. We report on our successful experience using this approach in the dynamic adaptation of a large-scale commercial application requiring both coarse and fine-grained modifications.\",\"PeriodicalId\":326554,\"journal\":{\"name\":\"Workshop on Self-Healing Systems\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Self-Healing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/582128.582142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Self-Healing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/582128.582142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

我们将反馈控制环路基础设施附加到现有的目标系统上,以持续监控和动态调整其活动和性能。(这种方法也可以应用于“新”系统,作为“内置”适应设施的替代方案,但我们在这里不讨论这个问题。)我们的基础设施由多层组成,目标为1。探测、测量和报告目标系统在其组件和连接器之间执行期间的活动和状态;2. 对报告的事件进行测量、分析和解释;和3。必要时,反馈到探头和仪表上,使其聚焦(例如,钻得更深),或反馈到运行中的目标系统上,以指导其自动调整和重新配置。我们报告了在需要粗粒度和细粒度修改的大型商业应用程序的动态适应中使用此方法的成功经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A case study in software adaptation
We attach a feedback-control-loop infrastructure to an existing target system, to continually monitor and dynamically adapt its activities and performance. (This approach could also be applied to "new" systems, as an alternative to "building in" adaptation facilities, but we do not address that here.) Our infrastructure consists of multiple layers, with the objectives of 1. probing, measuring and reporting of activity and state during the execution of the target system among its components and connectors; 2. gauging, analysis and interpretation of the reported events; and 3. whenever necessary, feedback onto the probes and gauges, to focus them (e.g., drill deeper), or onto the running target system, to direct its automatic adjustment and reconfiguration. We report on our successful experience using this approach in the dynamic adaptation of a large-scale commercial application requiring both coarse and fine-grained modifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A control-based framework for self-managing distributed computing systems Self-healing mechanisms for kernel system compromises Online model-based adaptation for optimizing performance and dependability A planning based approach to failure recovery in distributed systems Patterns of self-management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1