使用约束PLSA的意图感知多样化

Jacek Wasilewski, N. Hurley
{"title":"使用约束PLSA的意图感知多样化","authors":"Jacek Wasilewski, N. Hurley","doi":"10.1145/2959100.2959177","DOIUrl":null,"url":null,"abstract":"The intent-aware diversification framework was introduced initially in information retrieval and adopted to the context of recommender systems in the work of Vargas et al. The framework considers a set of aspects associated with items to be recommended. For instance, aspects may correspond to genres in movie recommendations. The framework depends on input aspect model consisting of item selection or relevance probabilities, given an aspect, and user intents, in the form of probabilities that the user is interested in each aspect. In this paper, we examine a number of input aspect models and evaluate the impact that different models have on the framework. In particular, we propose a constrained PLSA model that allows for interpretable output, in terms of known aspects, while achieving greater performance that the explicit co-occurrence counting method used in previous work. We evaluate the proposed models using a well-known MovieLens dataset for which item genres are available.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Intent-Aware Diversification Using a Constrained PLSA\",\"authors\":\"Jacek Wasilewski, N. Hurley\",\"doi\":\"10.1145/2959100.2959177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intent-aware diversification framework was introduced initially in information retrieval and adopted to the context of recommender systems in the work of Vargas et al. The framework considers a set of aspects associated with items to be recommended. For instance, aspects may correspond to genres in movie recommendations. The framework depends on input aspect model consisting of item selection or relevance probabilities, given an aspect, and user intents, in the form of probabilities that the user is interested in each aspect. In this paper, we examine a number of input aspect models and evaluate the impact that different models have on the framework. In particular, we propose a constrained PLSA model that allows for interpretable output, in terms of known aspects, while achieving greater performance that the explicit co-occurrence counting method used in previous work. We evaluate the proposed models using a well-known MovieLens dataset for which item genres are available.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

意向感知多样化框架最初是在信息检索中引入的,并在Vargas等人的工作中被应用到推荐系统中。该框架考虑与要推荐的项目相关的一组方面。例如,方面可能对应于电影推荐中的类型。该框架依赖于输入方面模型,该模型由项目选择或相关概率(给定一个方面)和用户意图(以用户对每个方面感兴趣的概率的形式)组成。在本文中,我们研究了一些输入方面模型,并评估了不同模型对框架的影响。特别是,我们提出了一个约束PLSA模型,该模型允许在已知方面的可解释输出,同时实现比先前工作中使用的显式共现计数方法更高的性能。我们使用一个众所周知的MovieLens数据集来评估所提出的模型,其中项目类型是可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intent-Aware Diversification Using a Constrained PLSA
The intent-aware diversification framework was introduced initially in information retrieval and adopted to the context of recommender systems in the work of Vargas et al. The framework considers a set of aspects associated with items to be recommended. For instance, aspects may correspond to genres in movie recommendations. The framework depends on input aspect model consisting of item selection or relevance probabilities, given an aspect, and user intents, in the form of probabilities that the user is interested in each aspect. In this paper, we examine a number of input aspect models and evaluate the impact that different models have on the framework. In particular, we propose a constrained PLSA model that allows for interpretable output, in terms of known aspects, while achieving greater performance that the explicit co-occurrence counting method used in previous work. We evaluate the proposed models using a well-known MovieLens dataset for which item genres are available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opening Remarks Mining Information for the Cold-Item Problem Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling Contrasting Offline and Online Results when Evaluating Recommendation Algorithms Intent-Aware Diversification Using a Constrained PLSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1