{"title":"非再生多播MIMO中继系统的简化鲁棒设计","authors":"Lenin Gopal, Y. Rong, Z. Zang","doi":"10.1109/ICT.2015.7124698","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust transceiver design for nonregenerative multicasting multiple-input multiple-output (MIMO) relay systems where a transmitter broadcasts common message to multiple receivers with aid of a relay node and the transmitter, relay and receivers are all equipped with multiple antennas. In the proposed design, the actual channel state information (CSI) is assumed as a Gaussian random matrix with the estimated CSI as the mean value, and the channel estimation errors are derived from the well-known Kronecker model. In the proposed design scheme, the transmitter and relay precoding matrices are jointly optimized to minimize the maximal mean squared-error (MSE) of the estimated signal at all receivers. The optimization problem is highly nonconvex in nature. Hence, we propose a low complexity solution by exploiting the optimal structure of the relay precoding matrix. Numerical simulations demonstrate the improved robustness of the proposed transceiver design algorithm against the CSI mismatch.","PeriodicalId":375669,"journal":{"name":"2015 22nd International Conference on Telecommunications (ICT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simplified robust design for nonregenerativemm multicasting MIMO relay systems\",\"authors\":\"Lenin Gopal, Y. Rong, Z. Zang\",\"doi\":\"10.1109/ICT.2015.7124698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a robust transceiver design for nonregenerative multicasting multiple-input multiple-output (MIMO) relay systems where a transmitter broadcasts common message to multiple receivers with aid of a relay node and the transmitter, relay and receivers are all equipped with multiple antennas. In the proposed design, the actual channel state information (CSI) is assumed as a Gaussian random matrix with the estimated CSI as the mean value, and the channel estimation errors are derived from the well-known Kronecker model. In the proposed design scheme, the transmitter and relay precoding matrices are jointly optimized to minimize the maximal mean squared-error (MSE) of the estimated signal at all receivers. The optimization problem is highly nonconvex in nature. Hence, we propose a low complexity solution by exploiting the optimal structure of the relay precoding matrix. Numerical simulations demonstrate the improved robustness of the proposed transceiver design algorithm against the CSI mismatch.\",\"PeriodicalId\":375669,\"journal\":{\"name\":\"2015 22nd International Conference on Telecommunications (ICT)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 22nd International Conference on Telecommunications (ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2015.7124698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 22nd International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2015.7124698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simplified robust design for nonregenerativemm multicasting MIMO relay systems
In this paper, we propose a robust transceiver design for nonregenerative multicasting multiple-input multiple-output (MIMO) relay systems where a transmitter broadcasts common message to multiple receivers with aid of a relay node and the transmitter, relay and receivers are all equipped with multiple antennas. In the proposed design, the actual channel state information (CSI) is assumed as a Gaussian random matrix with the estimated CSI as the mean value, and the channel estimation errors are derived from the well-known Kronecker model. In the proposed design scheme, the transmitter and relay precoding matrices are jointly optimized to minimize the maximal mean squared-error (MSE) of the estimated signal at all receivers. The optimization problem is highly nonconvex in nature. Hence, we propose a low complexity solution by exploiting the optimal structure of the relay precoding matrix. Numerical simulations demonstrate the improved robustness of the proposed transceiver design algorithm against the CSI mismatch.