{"title":"基于学习的深度神经网络数据中心运行功率预测","authors":"Yuanlong Li, Han Hu, Yonggang Wen, Jun Zhang","doi":"10.1145/2940679.2940685","DOIUrl":null,"url":null,"abstract":"Modelling and analyzing power consumption for data centres can diagnose potential energy-hungry components and applications, and facilitate in-time control, benefiting the energy efficiency of data centers. However, solutions to this problem, including static power models and canonical prediction models, either aim to build a static relationship between power consumption and hardware/application configurations without considering the dynamic fluctuation of power; or simply treat it as time series, ignoring the inherit power data characteristics. To tackle these issues, in this paper, we present a systematic power prediction framework based on extensive power dynamic profiling and deep learning models. In particular, we first analyse different power series samples to illustrate their noise patterns; accordingly we propose a power data de-noising method, which lowers noise interference to the modelling. With the pretreated data, we propose two deep learning based prediction models, including a fine-grained model and a coarse-grained model, which are suitable for different time scales. In the fine-grained prediction model, a recursive autoencoder (AE) is employed for short-duration prediction; in the coarse-grained model, an AE is used to encode massive fine-grained historical data as a further data pretreatment for long-duration prediction. Experimental results show that our proposed models outperform canonical prediction methods with higher accuracy, up to 79% error reduction for certain cases.","PeriodicalId":268208,"journal":{"name":"Proceedings of the 5th International Workshop on Energy Efficient Data Centres","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Learning-based power prediction for data centre operations via deep neural networks\",\"authors\":\"Yuanlong Li, Han Hu, Yonggang Wen, Jun Zhang\",\"doi\":\"10.1145/2940679.2940685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelling and analyzing power consumption for data centres can diagnose potential energy-hungry components and applications, and facilitate in-time control, benefiting the energy efficiency of data centers. However, solutions to this problem, including static power models and canonical prediction models, either aim to build a static relationship between power consumption and hardware/application configurations without considering the dynamic fluctuation of power; or simply treat it as time series, ignoring the inherit power data characteristics. To tackle these issues, in this paper, we present a systematic power prediction framework based on extensive power dynamic profiling and deep learning models. In particular, we first analyse different power series samples to illustrate their noise patterns; accordingly we propose a power data de-noising method, which lowers noise interference to the modelling. With the pretreated data, we propose two deep learning based prediction models, including a fine-grained model and a coarse-grained model, which are suitable for different time scales. In the fine-grained prediction model, a recursive autoencoder (AE) is employed for short-duration prediction; in the coarse-grained model, an AE is used to encode massive fine-grained historical data as a further data pretreatment for long-duration prediction. Experimental results show that our proposed models outperform canonical prediction methods with higher accuracy, up to 79% error reduction for certain cases.\",\"PeriodicalId\":268208,\"journal\":{\"name\":\"Proceedings of the 5th International Workshop on Energy Efficient Data Centres\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Workshop on Energy Efficient Data Centres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2940679.2940685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Energy Efficient Data Centres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2940679.2940685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning-based power prediction for data centre operations via deep neural networks
Modelling and analyzing power consumption for data centres can diagnose potential energy-hungry components and applications, and facilitate in-time control, benefiting the energy efficiency of data centers. However, solutions to this problem, including static power models and canonical prediction models, either aim to build a static relationship between power consumption and hardware/application configurations without considering the dynamic fluctuation of power; or simply treat it as time series, ignoring the inherit power data characteristics. To tackle these issues, in this paper, we present a systematic power prediction framework based on extensive power dynamic profiling and deep learning models. In particular, we first analyse different power series samples to illustrate their noise patterns; accordingly we propose a power data de-noising method, which lowers noise interference to the modelling. With the pretreated data, we propose two deep learning based prediction models, including a fine-grained model and a coarse-grained model, which are suitable for different time scales. In the fine-grained prediction model, a recursive autoencoder (AE) is employed for short-duration prediction; in the coarse-grained model, an AE is used to encode massive fine-grained historical data as a further data pretreatment for long-duration prediction. Experimental results show that our proposed models outperform canonical prediction methods with higher accuracy, up to 79% error reduction for certain cases.