使用一种新的格兰杰因果关系实现暴露于情境恐惧的对照小鼠的蛋白质图谱

M. Furqan, M. Y. Siyal
{"title":"使用一种新的格兰杰因果关系实现暴露于情境恐惧的对照小鼠的蛋白质图谱","authors":"M. Furqan, M. Y. Siyal","doi":"10.1109/AIMS.2015.26","DOIUrl":null,"url":null,"abstract":"Temporal information plays a substantial role in accessing Granger Causality. However, new technology limits the availability of data by simultaneously analyzing high dimensional data. Recent studies suggest that this problem can be resolved by reusing the data after reversing the timestamp. Based on this idea, we are proposing a new method called Forward Backward Pair wise Granger Causality that can deal with high dimensional data and can extract more causal data. We have used simulated data to compare our proposed method with the existing method and later, we have applied the proposed approach to control mice data to map the protein map involved in studying the fear.","PeriodicalId":121874,"journal":{"name":"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Protein Map of Control Mice Exposed to Context Fear Using a Novel Implementation of Granger Causality\",\"authors\":\"M. Furqan, M. Y. Siyal\",\"doi\":\"10.1109/AIMS.2015.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal information plays a substantial role in accessing Granger Causality. However, new technology limits the availability of data by simultaneously analyzing high dimensional data. Recent studies suggest that this problem can be resolved by reusing the data after reversing the timestamp. Based on this idea, we are proposing a new method called Forward Backward Pair wise Granger Causality that can deal with high dimensional data and can extract more causal data. We have used simulated data to compare our proposed method with the existing method and later, we have applied the proposed approach to control mice data to map the protein map involved in studying the fear.\",\"PeriodicalId\":121874,\"journal\":{\"name\":\"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIMS.2015.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMS.2015.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

时间信息在格兰杰因果关系的获取中起着重要作用。然而,新技术通过同时分析高维数据限制了数据的可用性。最近的研究表明,这个问题可以通过反转时间戳后重用数据来解决。基于这一思想,我们提出了一种新的方法,称为正向向后对格兰杰因果关系,它可以处理高维数据,并可以提取更多的因果数据。我们使用模拟数据将我们提出的方法与现有方法进行比较,随后,我们将提出的方法应用于控制小鼠数据来绘制研究恐惧所涉及的蛋白质图谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protein Map of Control Mice Exposed to Context Fear Using a Novel Implementation of Granger Causality
Temporal information plays a substantial role in accessing Granger Causality. However, new technology limits the availability of data by simultaneously analyzing high dimensional data. Recent studies suggest that this problem can be resolved by reusing the data after reversing the timestamp. Based on this idea, we are proposing a new method called Forward Backward Pair wise Granger Causality that can deal with high dimensional data and can extract more causal data. We have used simulated data to compare our proposed method with the existing method and later, we have applied the proposed approach to control mice data to map the protein map involved in studying the fear.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real Time Detection and Tracking of Mouth Region of Single Human Face Tamper Detection in Speech Based Access Control Systems Using Watermarking A Clustering Algorithm for WSN to Optimize the Network Lifetime Using Type-2 Fuzzy Logic Model On the Trade-Off between Multi-level Security Classification Accuracy and Training Time An Improved Quality of Service Using R-AODV Protocol in MANETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1