E. G. Llano, J. Colores-Vargas, M. García-Vázquez, L. M. Zamudio-Fuentes, A. A. Ramírez-Acosta
{"title":"应用鲁棒融合分割算法的跨传感器虹膜验证","authors":"E. G. Llano, J. Colores-Vargas, M. García-Vázquez, L. M. Zamudio-Fuentes, A. A. Ramírez-Acosta","doi":"10.1109/ICB.2015.7139042","DOIUrl":null,"url":null,"abstract":"Currently, identity management systems work with heterogeneous iris images captured by different types of iris sensors. Indeed, iris recognition is being widely used in different environments where the identity of a person is necessary. Therefore, it is a challenging problem to maintain a stable iris recognition system which is effective for all type of iris sensors. This paper proposes a new cross-sensor iris recognition scheme that increases the recognition accuracy. The novelty of this work is the new strategy in applying robust fusion methods at level of segmentation stage for cross-sensor iris recognition. The experiments with the Casia-V3-Interval, Casia-V4-Thousand, Ubiris-V1 and MBGC-V2 databases show that our scheme increases the recognition accuracy and it is robust to different types of iris sensors while the user interaction is reduced.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Cross-sensor iris verification applying robust fused segmentation algorithms\",\"authors\":\"E. G. Llano, J. Colores-Vargas, M. García-Vázquez, L. M. Zamudio-Fuentes, A. A. Ramírez-Acosta\",\"doi\":\"10.1109/ICB.2015.7139042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, identity management systems work with heterogeneous iris images captured by different types of iris sensors. Indeed, iris recognition is being widely used in different environments where the identity of a person is necessary. Therefore, it is a challenging problem to maintain a stable iris recognition system which is effective for all type of iris sensors. This paper proposes a new cross-sensor iris recognition scheme that increases the recognition accuracy. The novelty of this work is the new strategy in applying robust fusion methods at level of segmentation stage for cross-sensor iris recognition. The experiments with the Casia-V3-Interval, Casia-V4-Thousand, Ubiris-V1 and MBGC-V2 databases show that our scheme increases the recognition accuracy and it is robust to different types of iris sensors while the user interaction is reduced.\",\"PeriodicalId\":237372,\"journal\":{\"name\":\"2015 International Conference on Biometrics (ICB)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB.2015.7139042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Currently, identity management systems work with heterogeneous iris images captured by different types of iris sensors. Indeed, iris recognition is being widely used in different environments where the identity of a person is necessary. Therefore, it is a challenging problem to maintain a stable iris recognition system which is effective for all type of iris sensors. This paper proposes a new cross-sensor iris recognition scheme that increases the recognition accuracy. The novelty of this work is the new strategy in applying robust fusion methods at level of segmentation stage for cross-sensor iris recognition. The experiments with the Casia-V3-Interval, Casia-V4-Thousand, Ubiris-V1 and MBGC-V2 databases show that our scheme increases the recognition accuracy and it is robust to different types of iris sensors while the user interaction is reduced.