基于随机有限集和POMDP的风险传感器管理

M. E. G. Borges, Dominique Maltese, P. Vanheeghe, E. Duflos
{"title":"基于随机有限集和POMDP的风险传感器管理","authors":"M. E. G. Borges, Dominique Maltese, P. Vanheeghe, E. Duflos","doi":"10.23919/ICIF.2017.8009843","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of scheduling an agile sensor to perform an optimal control action in the case of the multi-target tracking scenario. Our purpose is to present a random finite set (RFS) approach to the multi-target sensor management problem formulated in the Partially Observed Markov Decision Process (POMDP) framework. The reward function associated with each sensor control (action) is computed via the Expected Risk Reduction between the multi-target predicted and updated densities. The proposed algorithm is implemented via the Probability Hypothesis Density filter (PHD). Numerical studies demonstrate the performance of this particular approach to a radar beam-pointing problem where targets need to be prioritized.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A risk-based sensor management using random finite sets and POMDP\",\"authors\":\"M. E. G. Borges, Dominique Maltese, P. Vanheeghe, E. Duflos\",\"doi\":\"10.23919/ICIF.2017.8009843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of scheduling an agile sensor to perform an optimal control action in the case of the multi-target tracking scenario. Our purpose is to present a random finite set (RFS) approach to the multi-target sensor management problem formulated in the Partially Observed Markov Decision Process (POMDP) framework. The reward function associated with each sensor control (action) is computed via the Expected Risk Reduction between the multi-target predicted and updated densities. The proposed algorithm is implemented via the Probability Hypothesis Density filter (PHD). Numerical studies demonstrate the performance of this particular approach to a radar beam-pointing problem where targets need to be prioritized.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文研究了在多目标跟踪情况下,调度敏捷传感器执行最优控制动作的问题。我们的目的是提出一种随机有限集(RFS)方法来解决部分可观察马尔可夫决策过程(POMDP)框架中制定的多目标传感器管理问题。与每个传感器控制(动作)相关的奖励函数是通过多目标预测密度和更新密度之间的预期风险降低来计算的。该算法通过概率假设密度滤波器(PHD)实现。数值研究证明了该方法在目标优先化问题中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A risk-based sensor management using random finite sets and POMDP
In this paper, we consider the problem of scheduling an agile sensor to perform an optimal control action in the case of the multi-target tracking scenario. Our purpose is to present a random finite set (RFS) approach to the multi-target sensor management problem formulated in the Partially Observed Markov Decision Process (POMDP) framework. The reward function associated with each sensor control (action) is computed via the Expected Risk Reduction between the multi-target predicted and updated densities. The proposed algorithm is implemented via the Probability Hypothesis Density filter (PHD). Numerical studies demonstrate the performance of this particular approach to a radar beam-pointing problem where targets need to be prioritized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1