染色归一化技术对基于深度学习的组织病理图像核分割的影响

Kishankumar Vaishnani, Bakul Gohel, Avik Hati
{"title":"染色归一化技术对基于深度学习的组织病理图像核分割的影响","authors":"Kishankumar Vaishnani, Bakul Gohel, Avik Hati","doi":"10.1109/AICAPS57044.2023.10074363","DOIUrl":null,"url":null,"abstract":"Cell nuclei count and morphology are the key parameters in the histopathological image for evaluating various pathological conditions. However, the manual extraction of these parameters is a tedious and time-consuming task. Automated nuclei segmentation is the practical solution. Deep learning-based approaches have recently become popular for automated nuclei segmentation tasks in histopathological images. Stain colour variability frequently occurs in Hematoxylin and Eosin (H&E)-stained histopathological images because of differences in the staining process and digitisation medium. A deep learning-based approach is susceptible to data variability; therefore, data augmentation and normalisation are crucial pre-processing steps to improve the model's generalisation. In the present work, we performed the comparative analysis of the colour augmentation and stain normalisation techniques, namely Reinhard, Macenko and Vahadane, for deep learning-based nuclei segmentation tasks in H&E stained histopathological images. We have used three different datasets and performed within-dataset and cross- dataset analysis to evaluate the trained model's generalisation capabilities. Stain normalisation methods, e.g. Reinhard and Vahadane, showed better performance in various datasets than colour augmentation techniques.","PeriodicalId":146698,"journal":{"name":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Stain Normalisation Technique on Deep Learning based Nuclei Segmentation in Histopathological Image\",\"authors\":\"Kishankumar Vaishnani, Bakul Gohel, Avik Hati\",\"doi\":\"10.1109/AICAPS57044.2023.10074363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell nuclei count and morphology are the key parameters in the histopathological image for evaluating various pathological conditions. However, the manual extraction of these parameters is a tedious and time-consuming task. Automated nuclei segmentation is the practical solution. Deep learning-based approaches have recently become popular for automated nuclei segmentation tasks in histopathological images. Stain colour variability frequently occurs in Hematoxylin and Eosin (H&E)-stained histopathological images because of differences in the staining process and digitisation medium. A deep learning-based approach is susceptible to data variability; therefore, data augmentation and normalisation are crucial pre-processing steps to improve the model's generalisation. In the present work, we performed the comparative analysis of the colour augmentation and stain normalisation techniques, namely Reinhard, Macenko and Vahadane, for deep learning-based nuclei segmentation tasks in H&E stained histopathological images. We have used three different datasets and performed within-dataset and cross- dataset analysis to evaluate the trained model's generalisation capabilities. Stain normalisation methods, e.g. Reinhard and Vahadane, showed better performance in various datasets than colour augmentation techniques.\",\"PeriodicalId\":146698,\"journal\":{\"name\":\"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAPS57044.2023.10074363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAPS57044.2023.10074363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞核计数和形态是组织病理图像中评估各种病理状况的关键参数。然而,手动提取这些参数是一项繁琐且耗时的任务。自动核分割是实用的解决方案。基于深度学习的方法最近在组织病理学图像的自动核分割任务中变得流行。由于染色过程和数字化介质的差异,在苏木精和伊红(H&E)染色的组织病理学图像中经常发生染色颜色变化。基于深度学习的方法容易受到数据可变性的影响;因此,数据增强和归一化是提高模型泛化的关键预处理步骤。在目前的工作中,我们对颜色增强和染色归一化技术(即Reinhard, Macenko和Vahadane)进行了比较分析,用于H&E染色组织病理图像中基于深度学习的核分割任务。我们使用了三个不同的数据集,并进行了数据集内和跨数据集分析,以评估训练模型的泛化能力。染色归一化方法,如Reinhard和Vahadane,在各种数据集上表现出比颜色增强技术更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Stain Normalisation Technique on Deep Learning based Nuclei Segmentation in Histopathological Image
Cell nuclei count and morphology are the key parameters in the histopathological image for evaluating various pathological conditions. However, the manual extraction of these parameters is a tedious and time-consuming task. Automated nuclei segmentation is the practical solution. Deep learning-based approaches have recently become popular for automated nuclei segmentation tasks in histopathological images. Stain colour variability frequently occurs in Hematoxylin and Eosin (H&E)-stained histopathological images because of differences in the staining process and digitisation medium. A deep learning-based approach is susceptible to data variability; therefore, data augmentation and normalisation are crucial pre-processing steps to improve the model's generalisation. In the present work, we performed the comparative analysis of the colour augmentation and stain normalisation techniques, namely Reinhard, Macenko and Vahadane, for deep learning-based nuclei segmentation tasks in H&E stained histopathological images. We have used three different datasets and performed within-dataset and cross- dataset analysis to evaluate the trained model's generalisation capabilities. Stain normalisation methods, e.g. Reinhard and Vahadane, showed better performance in various datasets than colour augmentation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Irrigation Management System for Precision Agriculture Impact of Stain Normalisation Technique on Deep Learning based Nuclei Segmentation in Histopathological Image An Optimal Differential Evolution Based XGB Classifier for IoMT malware classification Sarcasm Detection followed by Sentiment Analysis for Bengali Language: Neural Network & Supervised Approach Feature Selection using Enhanced Nature Optimization Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1