一种盲的LSBR图像隐写分析技术

Saman Shojae Chaeikar, A. Ahmadi
{"title":"一种盲的LSBR图像隐写分析技术","authors":"Saman Shojae Chaeikar, A. Ahmadi","doi":"10.1145/3177457.3177488","DOIUrl":null,"url":null,"abstract":"Blind image steganalysis is exploring body of digital images for the likely presence of hidden secret messages without knowledge of the employed steganographic technique. This paper proposes a novel image steganalysis technique to attack spatial domain LSBR stego images. The chosen steganalytic feature is the relation between length of the embedded message and the regressed proportion of intensity identical pixels and color channels. A trained SVM analyzes the pixels and the final decision is made based on union of the pixel analysis results. In SW, a number of innovative contributions are made to the field of blind image steganalysis. First, measuring pixel and cannel color correlativity as steganalytic feature. Second, defining pixel membership degree, thereby the pixels gain different level of influence on the process. Third, generating six references for statistical patterns of cover and stego pixels. And fourth, achieving 99.626% steganalyzer sensitivity on 0.25bpp stego images by only two analysis dimensions.","PeriodicalId":297531,"journal":{"name":"Proceedings of the 10th International Conference on Computer Modeling and Simulation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"SW: a blind LSBR image steganalysis technique\",\"authors\":\"Saman Shojae Chaeikar, A. Ahmadi\",\"doi\":\"10.1145/3177457.3177488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind image steganalysis is exploring body of digital images for the likely presence of hidden secret messages without knowledge of the employed steganographic technique. This paper proposes a novel image steganalysis technique to attack spatial domain LSBR stego images. The chosen steganalytic feature is the relation between length of the embedded message and the regressed proportion of intensity identical pixels and color channels. A trained SVM analyzes the pixels and the final decision is made based on union of the pixel analysis results. In SW, a number of innovative contributions are made to the field of blind image steganalysis. First, measuring pixel and cannel color correlativity as steganalytic feature. Second, defining pixel membership degree, thereby the pixels gain different level of influence on the process. Third, generating six references for statistical patterns of cover and stego pixels. And fourth, achieving 99.626% steganalyzer sensitivity on 0.25bpp stego images by only two analysis dimensions.\",\"PeriodicalId\":297531,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on Computer Modeling and Simulation\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3177457.3177488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177457.3177488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

盲图像隐写分析是在不知道所采用的隐写技术的情况下,探索数字图像中可能存在隐藏的秘密信息。针对空间域LSBR隐写图像,提出了一种新的图像隐写分析技术。所选择的隐写分析特征是嵌入信息的长度与强度相同像素和颜色通道的回归比例之间的关系。训练后的支持向量机对像素进行分析,并根据像素分析结果的并集做出最终决策。在SW中,盲图像隐写分析领域做出了许多创新贡献。首先,测量像素和通道颜色的相关性作为隐写特征。其次,定义像素的隶属度,从而使像素对过程获得不同程度的影响。第三,生成6个覆盖和隐影像素统计模式的参考。第四,仅用两个分析维度就能在0.25bpp的隐写图像上实现99.626%的隐写分析器灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SW: a blind LSBR image steganalysis technique
Blind image steganalysis is exploring body of digital images for the likely presence of hidden secret messages without knowledge of the employed steganographic technique. This paper proposes a novel image steganalysis technique to attack spatial domain LSBR stego images. The chosen steganalytic feature is the relation between length of the embedded message and the regressed proportion of intensity identical pixels and color channels. A trained SVM analyzes the pixels and the final decision is made based on union of the pixel analysis results. In SW, a number of innovative contributions are made to the field of blind image steganalysis. First, measuring pixel and cannel color correlativity as steganalytic feature. Second, defining pixel membership degree, thereby the pixels gain different level of influence on the process. Third, generating six references for statistical patterns of cover and stego pixels. And fourth, achieving 99.626% steganalyzer sensitivity on 0.25bpp stego images by only two analysis dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
rTuner: A Performance Enhancement of MapReduce Job Sensitivity Analysis of a Causality-Informed Genetic Programming Ensemble for Inferring Dynamical Systems Improving Efficiency of TV PCB Assembly Line Using a Discrete Event Simulation Approach: A Case Study Workflow for Developing High-Resolution 3D City Models in Korea Standard Values of Service Level of Intersection for Collection and Distribution Roads of Container Terminals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1