L. Biswal, Chandan Bandyopadhyay, A. Chattopadhyay, R. Wille, R. Drechsler, H. Rahaman
{"title":"最近邻和容错量子电路实现","authors":"L. Biswal, Chandan Bandyopadhyay, A. Chattopadhyay, R. Wille, R. Drechsler, H. Rahaman","doi":"10.1109/ISMVL.2016.48","DOIUrl":null,"url":null,"abstract":"The quest of achieving higher computing performance is driving the research on quantum computing, which is reporting new milestones almost on a daily basis. For practical quantum circuit design, fault tolerance is an essential condition. This is achieved by mapping the target functions into the Clifford+T group of elementary quantum gates. Furthermore, the application of error-correcting codes in quantum circuits requires the quantum gates to be formed between adjacent Qubits. In this work, we improve the state-of-the-art quantum circuit design by addressing both of the above challenges. First, we propose a novel mapping of Multiple-Control Toffoli (MCT) gates to Clifford+T group gates, which achieves lower gate count compared to earlier work. Secondly, we show a generic way to convert any Clifford+T circuit into a nearest neighbor one. We validate the efficacy of our approach with detailed experimental studies.","PeriodicalId":246194,"journal":{"name":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Nearest-Neighbor and Fault-Tolerant Quantum Circuit Implementation\",\"authors\":\"L. Biswal, Chandan Bandyopadhyay, A. Chattopadhyay, R. Wille, R. Drechsler, H. Rahaman\",\"doi\":\"10.1109/ISMVL.2016.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quest of achieving higher computing performance is driving the research on quantum computing, which is reporting new milestones almost on a daily basis. For practical quantum circuit design, fault tolerance is an essential condition. This is achieved by mapping the target functions into the Clifford+T group of elementary quantum gates. Furthermore, the application of error-correcting codes in quantum circuits requires the quantum gates to be formed between adjacent Qubits. In this work, we improve the state-of-the-art quantum circuit design by addressing both of the above challenges. First, we propose a novel mapping of Multiple-Control Toffoli (MCT) gates to Clifford+T group gates, which achieves lower gate count compared to earlier work. Secondly, we show a generic way to convert any Clifford+T circuit into a nearest neighbor one. We validate the efficacy of our approach with detailed experimental studies.\",\"PeriodicalId\":246194,\"journal\":{\"name\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2016.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2016.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nearest-Neighbor and Fault-Tolerant Quantum Circuit Implementation
The quest of achieving higher computing performance is driving the research on quantum computing, which is reporting new milestones almost on a daily basis. For practical quantum circuit design, fault tolerance is an essential condition. This is achieved by mapping the target functions into the Clifford+T group of elementary quantum gates. Furthermore, the application of error-correcting codes in quantum circuits requires the quantum gates to be formed between adjacent Qubits. In this work, we improve the state-of-the-art quantum circuit design by addressing both of the above challenges. First, we propose a novel mapping of Multiple-Control Toffoli (MCT) gates to Clifford+T group gates, which achieves lower gate count compared to earlier work. Secondly, we show a generic way to convert any Clifford+T circuit into a nearest neighbor one. We validate the efficacy of our approach with detailed experimental studies.