{"title":"自主机器人距离图像中的道路边界检测","authors":"U. Sharma, L. Davis","doi":"10.1109/56.20436","DOIUrl":null,"url":null,"abstract":"The authors describe a road-following system for an autonomous land vehicle, based on range image analysis. The system is divided into two parts: low-level data-driven analysis, followed by high-level model-directed search. The sequence of steps performed in order to detect three-dimensional (3-D) road boundaries is as follows. Range data are first converted from spherical into Cartesian coordinates. A quadric (or planar) surface is then fitted to the neighborhood of each range pixel, using a least squires fit method. Based on this fit, minimum and maximum principal surface curvatures are computed at each point to detect edges. Next, using Hough transform techniques, 3-D local line segments are extracted. Finally, model-directed reasoning is applied to detect the road boundaries. >","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Road boundary detection in range imagery for an autonomous robot\",\"authors\":\"U. Sharma, L. Davis\",\"doi\":\"10.1109/56.20436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors describe a road-following system for an autonomous land vehicle, based on range image analysis. The system is divided into two parts: low-level data-driven analysis, followed by high-level model-directed search. The sequence of steps performed in order to detect three-dimensional (3-D) road boundaries is as follows. Range data are first converted from spherical into Cartesian coordinates. A quadric (or planar) surface is then fitted to the neighborhood of each range pixel, using a least squires fit method. Based on this fit, minimum and maximum principal surface curvatures are computed at each point to detect edges. Next, using Hough transform techniques, 3-D local line segments are extracted. Finally, model-directed reasoning is applied to detect the road boundaries. >\",\"PeriodicalId\":370047,\"journal\":{\"name\":\"IEEE J. Robotics Autom.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE J. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/56.20436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/56.20436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Road boundary detection in range imagery for an autonomous robot
The authors describe a road-following system for an autonomous land vehicle, based on range image analysis. The system is divided into two parts: low-level data-driven analysis, followed by high-level model-directed search. The sequence of steps performed in order to detect three-dimensional (3-D) road boundaries is as follows. Range data are first converted from spherical into Cartesian coordinates. A quadric (or planar) surface is then fitted to the neighborhood of each range pixel, using a least squires fit method. Based on this fit, minimum and maximum principal surface curvatures are computed at each point to detect edges. Next, using Hough transform techniques, 3-D local line segments are extracted. Finally, model-directed reasoning is applied to detect the road boundaries. >