基于学习方法的多变量过程非线性观测器故障检测

Haiying Qi, A. Ertiame, Kingsley Madubuike, Dingli Yu, J. Gomm
{"title":"基于学习方法的多变量过程非线性观测器故障检测","authors":"Haiying Qi, A. Ertiame, Kingsley Madubuike, Dingli Yu, J. Gomm","doi":"10.23919/IConAC.2018.8749081","DOIUrl":null,"url":null,"abstract":"A fault diagnosis method for nonlinear systems is developed in this paper using a designed nonlinear state observer. In the observer system a neural network is utilized to estimate the possible fault on-line. It is proved that when the nonlinear observer output converges to the system states, the on-line estimator will converge to the time varying faults. In this way, not only that the occurring fault can be detected, the size and waveform of the fault can be estimated to achieve fault identification, which is very useful when the fault tolerant control will be further developed. The developed fault diagnosis method is applied to a continuous stirred tank reactor (CSTR) process with some simulated faults. Simulation results demonstrate the effectiveness of the fault diagnosis method.","PeriodicalId":121030,"journal":{"name":"2018 24th International Conference on Automation and Computing (ICAC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Observer Fault Detection for a Multivariable Process Using a Learning Methodology\",\"authors\":\"Haiying Qi, A. Ertiame, Kingsley Madubuike, Dingli Yu, J. Gomm\",\"doi\":\"10.23919/IConAC.2018.8749081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fault diagnosis method for nonlinear systems is developed in this paper using a designed nonlinear state observer. In the observer system a neural network is utilized to estimate the possible fault on-line. It is proved that when the nonlinear observer output converges to the system states, the on-line estimator will converge to the time varying faults. In this way, not only that the occurring fault can be detected, the size and waveform of the fault can be estimated to achieve fault identification, which is very useful when the fault tolerant control will be further developed. The developed fault diagnosis method is applied to a continuous stirred tank reactor (CSTR) process with some simulated faults. Simulation results demonstrate the effectiveness of the fault diagnosis method.\",\"PeriodicalId\":121030,\"journal\":{\"name\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IConAC.2018.8749081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 24th International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IConAC.2018.8749081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用设计好的非线性状态观测器进行非线性系统故障诊断的方法。在观测器系统中,利用神经网络在线估计可能出现的故障。证明了当非线性观测器输出收敛到系统状态时,在线估计器将收敛到时变故障。这样不仅可以检测到发生的故障,还可以估计出故障的大小和波形,从而实现故障识别,对进一步发展容错控制具有重要意义。将所建立的故障诊断方法应用于具有模拟故障的连续搅拌槽式反应器(CSTR)。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear Observer Fault Detection for a Multivariable Process Using a Learning Methodology
A fault diagnosis method for nonlinear systems is developed in this paper using a designed nonlinear state observer. In the observer system a neural network is utilized to estimate the possible fault on-line. It is proved that when the nonlinear observer output converges to the system states, the on-line estimator will converge to the time varying faults. In this way, not only that the occurring fault can be detected, the size and waveform of the fault can be estimated to achieve fault identification, which is very useful when the fault tolerant control will be further developed. The developed fault diagnosis method is applied to a continuous stirred tank reactor (CSTR) process with some simulated faults. Simulation results demonstrate the effectiveness of the fault diagnosis method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Framework for Plagiarism Detection: A Case Study for Urdu Language Scale Detection Based on Maximum Entropy Principle Comparative Study of Eddy Current Pulsed and Long Pulse Optical Thermography for Defect Detection in Aluminium Plate Cost Minimization Control for Smart Electric Vehicle Car Parks Sliding Mode Control for Wearable Exoskeleton based on Disturbance Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1