{"title":"基于S^3GP的稀疏半监督视觉映射","authors":"Oliver Williams, A. Blake, R. Cipolla","doi":"10.1109/CVPR.2006.285","DOIUrl":null,"url":null,"abstract":"This paper is about mapping images to continuous output spaces using powerful Bayesian learning techniques. A sparse, semi-supervised Gaussian process regression model (S3GP) is introduced which learns a mapping using only partially labelled training data. We show that sparsity bestows efficiency on the S3GP which requires minimal CPU utilization for real-time operation; the predictions of uncertainty made by the S3GP are more accurate than those of other models leading to considerable performance improvements when combined with a probabilistic filter; and the ability to learn from semi-supervised data simplifies the process of collecting training data. The S3GP uses a mixture of different image features: this is also shown to improve the accuracy and consistency of the mapping. A major application of this work is its use as a gaze tracking system in which images of a human eye are mapped to screen coordinates: in this capacity our approach is efficient, accurate and versatile.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":"{\"title\":\"Sparse and Semi-supervised Visual Mapping with the S^3GP\",\"authors\":\"Oliver Williams, A. Blake, R. Cipolla\",\"doi\":\"10.1109/CVPR.2006.285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is about mapping images to continuous output spaces using powerful Bayesian learning techniques. A sparse, semi-supervised Gaussian process regression model (S3GP) is introduced which learns a mapping using only partially labelled training data. We show that sparsity bestows efficiency on the S3GP which requires minimal CPU utilization for real-time operation; the predictions of uncertainty made by the S3GP are more accurate than those of other models leading to considerable performance improvements when combined with a probabilistic filter; and the ability to learn from semi-supervised data simplifies the process of collecting training data. The S3GP uses a mixture of different image features: this is also shown to improve the accuracy and consistency of the mapping. A major application of this work is its use as a gaze tracking system in which images of a human eye are mapped to screen coordinates: in this capacity our approach is efficient, accurate and versatile.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"145\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sparse and Semi-supervised Visual Mapping with the S^3GP
This paper is about mapping images to continuous output spaces using powerful Bayesian learning techniques. A sparse, semi-supervised Gaussian process regression model (S3GP) is introduced which learns a mapping using only partially labelled training data. We show that sparsity bestows efficiency on the S3GP which requires minimal CPU utilization for real-time operation; the predictions of uncertainty made by the S3GP are more accurate than those of other models leading to considerable performance improvements when combined with a probabilistic filter; and the ability to learn from semi-supervised data simplifies the process of collecting training data. The S3GP uses a mixture of different image features: this is also shown to improve the accuracy and consistency of the mapping. A major application of this work is its use as a gaze tracking system in which images of a human eye are mapped to screen coordinates: in this capacity our approach is efficient, accurate and versatile.