Michael F. Cloutier, Chad Paradis, Vincent M. Weaver
{"title":"能源与性能优化的32位嵌入式高性能集群的设计与分析","authors":"Michael F. Cloutier, Chad Paradis, Vincent M. Weaver","doi":"10.1109/Co-HPC.2014.7","DOIUrl":null,"url":null,"abstract":"A growing number of supercomputers are being built using processors with low-power embedded ancestry, rather than traditional high-performance cores. In order to evaluate this approach we investigate the energy and performance tradeoffs found with ten different 32-bit ARM development boards while running the HPL Linpack and STREAM benchmarks.Based on these results (and other practical concerns) we chose the Raspberry Pi as a basis for a power-aware embedded cluster computing testbed. Each node of the cluster is instrumented with power measurement circuitry so that detailed cluster-wide power measurements can be obtained, enabling power / performance co-design experiments.While our cluster lags recent x86 machines in performance, the power, visualization, and thermal features make it an excellent low-cost platform for education and experimentation.","PeriodicalId":136638,"journal":{"name":"2014 Hardware-Software Co-Design for High Performance Computing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Design and Analysis of a 32-bit Embedded High-Performance Cluster Optimized for Energy and Performance\",\"authors\":\"Michael F. Cloutier, Chad Paradis, Vincent M. Weaver\",\"doi\":\"10.1109/Co-HPC.2014.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A growing number of supercomputers are being built using processors with low-power embedded ancestry, rather than traditional high-performance cores. In order to evaluate this approach we investigate the energy and performance tradeoffs found with ten different 32-bit ARM development boards while running the HPL Linpack and STREAM benchmarks.Based on these results (and other practical concerns) we chose the Raspberry Pi as a basis for a power-aware embedded cluster computing testbed. Each node of the cluster is instrumented with power measurement circuitry so that detailed cluster-wide power measurements can be obtained, enabling power / performance co-design experiments.While our cluster lags recent x86 machines in performance, the power, visualization, and thermal features make it an excellent low-cost platform for education and experimentation.\",\"PeriodicalId\":136638,\"journal\":{\"name\":\"2014 Hardware-Software Co-Design for High Performance Computing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Hardware-Software Co-Design for High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Co-HPC.2014.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Hardware-Software Co-Design for High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Co-HPC.2014.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Analysis of a 32-bit Embedded High-Performance Cluster Optimized for Energy and Performance
A growing number of supercomputers are being built using processors with low-power embedded ancestry, rather than traditional high-performance cores. In order to evaluate this approach we investigate the energy and performance tradeoffs found with ten different 32-bit ARM development boards while running the HPL Linpack and STREAM benchmarks.Based on these results (and other practical concerns) we chose the Raspberry Pi as a basis for a power-aware embedded cluster computing testbed. Each node of the cluster is instrumented with power measurement circuitry so that detailed cluster-wide power measurements can be obtained, enabling power / performance co-design experiments.While our cluster lags recent x86 machines in performance, the power, visualization, and thermal features make it an excellent low-cost platform for education and experimentation.