基于强化学习方法的室内无人机安全轨迹设计

Dénes Tompos, B. Németh
{"title":"基于强化学习方法的室内无人机安全轨迹设计","authors":"Dénes Tompos, B. Németh","doi":"10.1109/SACI58269.2023.10158591","DOIUrl":null,"url":null,"abstract":"This paper proposes a design method for achieving safe trajectory of indoor drones. The trajectory design with a reinforcement-learning-based (RL) agent is facilitated, which can result in efficient and collision-free motion. The method is developed for motion in indoor area with moving mobile robots, and thus, the collision with these obstacles must be avoided. Through RL-based design the fast motion of the drones can be achieved, which must perform a mission between workstations in a manufacturing system. The effectiveness of the design process through a simulation example on a real laboratory environment is illustrated.","PeriodicalId":339156,"journal":{"name":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe trajectory design for indoor drones using reinforcement-learning-based methods\",\"authors\":\"Dénes Tompos, B. Németh\",\"doi\":\"10.1109/SACI58269.2023.10158591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a design method for achieving safe trajectory of indoor drones. The trajectory design with a reinforcement-learning-based (RL) agent is facilitated, which can result in efficient and collision-free motion. The method is developed for motion in indoor area with moving mobile robots, and thus, the collision with these obstacles must be avoided. Through RL-based design the fast motion of the drones can be achieved, which must perform a mission between workstations in a manufacturing system. The effectiveness of the design process through a simulation example on a real laboratory environment is illustrated.\",\"PeriodicalId\":339156,\"journal\":{\"name\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI58269.2023.10158591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI58269.2023.10158591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种实现室内无人机安全飞行轨迹的设计方法。利用基于强化学习(RL)的智能体进行轨迹设计,可以实现高效、无碰撞的运动。该方法适用于移动机器人在室内区域的运动,因此必须避免与这些障碍物的碰撞。通过基于rl的设计,可以实现制造系统中需要在工作站之间执行任务的无人机的快速运动。通过在真实实验室环境中的仿真算例,说明了设计过程的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safe trajectory design for indoor drones using reinforcement-learning-based methods
This paper proposes a design method for achieving safe trajectory of indoor drones. The trajectory design with a reinforcement-learning-based (RL) agent is facilitated, which can result in efficient and collision-free motion. The method is developed for motion in indoor area with moving mobile robots, and thus, the collision with these obstacles must be avoided. Through RL-based design the fast motion of the drones can be achieved, which must perform a mission between workstations in a manufacturing system. The effectiveness of the design process through a simulation example on a real laboratory environment is illustrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of 3D multi-user software tools in digital medicine – a scoping review Machine Learning in Heat Transfer: Taxonomy, Review and Evaluation Auction-Based Job Scheduling for Smart Manufacturing Safe trajectory design for indoor drones using reinforcement-learning-based methods Investigation of reward functions for controlling blood glucose level using reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1