基于PHD的三维空中和海上场景跟踪滤波器的比较

M. Pace
{"title":"基于PHD的三维空中和海上场景跟踪滤波器的比较","authors":"M. Pace","doi":"10.1109/RADAR.2010.5494574","DOIUrl":null,"url":null,"abstract":"The Probability Hypothesis Density (PHD) filter is applied to realistic three-dimensional aerial and naval scenarios to illustrate its performance in detecting, initiating and terminating tracks in presence of clutter. Radar measurements are available every two seconds. A comparisons between different approximations of the PHD recursion, namely the sequential Monte Carlo and the Gaussian Mixture approximation, is given on different scenarios using the OSPA metric and different levels of clutter.","PeriodicalId":125591,"journal":{"name":"2010 IEEE Radar Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comparison of PHD based filters for the tracking of 3D aerial and naval scenarios\",\"authors\":\"M. Pace\",\"doi\":\"10.1109/RADAR.2010.5494574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Probability Hypothesis Density (PHD) filter is applied to realistic three-dimensional aerial and naval scenarios to illustrate its performance in detecting, initiating and terminating tracks in presence of clutter. Radar measurements are available every two seconds. A comparisons between different approximations of the PHD recursion, namely the sequential Monte Carlo and the Gaussian Mixture approximation, is given on different scenarios using the OSPA metric and different levels of clutter.\",\"PeriodicalId\":125591,\"journal\":{\"name\":\"2010 IEEE Radar Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2010.5494574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2010.5494574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

将概率假设密度(PHD)滤波器应用于真实的三维空中和海上场景,以说明其在杂波存在下的航迹检测、启动和终止性能。雷达每两秒测量一次。在使用OSPA度量和不同杂波水平的不同情况下,比较了PHD递归的不同近似,即顺序蒙特卡罗近似和高斯混合近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of PHD based filters for the tracking of 3D aerial and naval scenarios
The Probability Hypothesis Density (PHD) filter is applied to realistic three-dimensional aerial and naval scenarios to illustrate its performance in detecting, initiating and terminating tracks in presence of clutter. Radar measurements are available every two seconds. A comparisons between different approximations of the PHD recursion, namely the sequential Monte Carlo and the Gaussian Mixture approximation, is given on different scenarios using the OSPA metric and different levels of clutter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ONERA SAR facilities Naval Multi-Function RADAR Phased array weather / multipurpose radar Angle measurement method for two targets within antenna beam width using two receivers Radar and Electronic Warfare cooperation: How to improve the system efficiency?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1