基于仿真的IDS适应度评估的神经网络逼近

Abdulmonem Alshahrani, John A. Clark
{"title":"基于仿真的IDS适应度评估的神经网络逼近","authors":"Abdulmonem Alshahrani, John A. Clark","doi":"10.1109/CSE57773.2022.00021","DOIUrl":null,"url":null,"abstract":"Configuring intrusion detection systems (IDSs) in large networks may involve balancing multiple criteria, e.g. detection rate, number of probes, and power consumption at each node. The tradeoffs become particularly acute when the nodes are resource-constrained, as is often the case in the Internet of Things (IoT) networks. A genetic algorithm based optimisation approach is outlined to address this task. However, the fitness function is evaluated in part via a computationally expensive simulation. We show how a neural network, trained over a set of IDS configurations, can be used as a surrogate fitness function, providing better results more cheaply.","PeriodicalId":165085,"journal":{"name":"2022 IEEE 25th International Conference on Computational Science and Engineering (CSE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network Approximation of Simulation-based IDS Fitness Evaluation\",\"authors\":\"Abdulmonem Alshahrani, John A. Clark\",\"doi\":\"10.1109/CSE57773.2022.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Configuring intrusion detection systems (IDSs) in large networks may involve balancing multiple criteria, e.g. detection rate, number of probes, and power consumption at each node. The tradeoffs become particularly acute when the nodes are resource-constrained, as is often the case in the Internet of Things (IoT) networks. A genetic algorithm based optimisation approach is outlined to address this task. However, the fitness function is evaluated in part via a computationally expensive simulation. We show how a neural network, trained over a set of IDS configurations, can be used as a surrogate fitness function, providing better results more cheaply.\",\"PeriodicalId\":165085,\"journal\":{\"name\":\"2022 IEEE 25th International Conference on Computational Science and Engineering (CSE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 25th International Conference on Computational Science and Engineering (CSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSE57773.2022.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 25th International Conference on Computational Science and Engineering (CSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE57773.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大型网络中,配置入侵检测系统可能需要权衡多个标准,如检测率、探测数、各节点功耗等。当节点资源受限时,这种权衡变得特别尖锐,就像物联网(IoT)网络中经常出现的情况一样。提出了一种基于遗传算法的优化方法来解决这一问题。然而,适应度函数部分是通过计算昂贵的模拟来评估的。我们展示了在一组IDS配置上训练的神经网络如何用作替代适应度函数,从而以更低的成本提供更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Network Approximation of Simulation-based IDS Fitness Evaluation
Configuring intrusion detection systems (IDSs) in large networks may involve balancing multiple criteria, e.g. detection rate, number of probes, and power consumption at each node. The tradeoffs become particularly acute when the nodes are resource-constrained, as is often the case in the Internet of Things (IoT) networks. A genetic algorithm based optimisation approach is outlined to address this task. However, the fitness function is evaluated in part via a computationally expensive simulation. We show how a neural network, trained over a set of IDS configurations, can be used as a surrogate fitness function, providing better results more cheaply.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Network Approximation of Simulation-based IDS Fitness Evaluation Analysis of student e-learning engagement using learning affect: Hybrid of facial emotions and domain model LED Dynamic Marker and Tracking Algorithm for External Camera Positioning Improving the System Identification of Transonic Wind Tunnel by a Regression Ensemble-Based Outlier Mining Method Data-driven Prior for Pharmaceutical Snapshot Spectral Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1