{"title":"一种基于tbr的轨迹分段线性算法,用于非线性模拟电路和MEMS的精确低阶模型生成","authors":"D. Vasilyev, M. Rewienski, Jacob K. White","doi":"10.1145/775832.775958","DOIUrl":null,"url":null,"abstract":"In this paper we propose a method for generating reduced models for a class of nonlinear dynamical systems, based on truncated balanced realization (TBR) algorithm and a recently developed trajectory piecewise-linear (TPWL) model order reduction approach. We also present a scheme which uses both Krylov-based and TBR-based projections. Computational results, obtained for examples of nonlinear circuits and a micro-electro-mechanical system (MEMS), indicate that the proposed reduction scheme generates nonlinear macromodels with superior accuracy as compared to reduction algorithms based solely on Krylov subspace projections, while maintaining a relatively low model extraction cost.","PeriodicalId":167477,"journal":{"name":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":"{\"title\":\"A TBR-based trajectory piecewise-linear algorithm for generating accurate low-order models for nonlinear analog circuits and MEMS\",\"authors\":\"D. Vasilyev, M. Rewienski, Jacob K. White\",\"doi\":\"10.1145/775832.775958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a method for generating reduced models for a class of nonlinear dynamical systems, based on truncated balanced realization (TBR) algorithm and a recently developed trajectory piecewise-linear (TPWL) model order reduction approach. We also present a scheme which uses both Krylov-based and TBR-based projections. Computational results, obtained for examples of nonlinear circuits and a micro-electro-mechanical system (MEMS), indicate that the proposed reduction scheme generates nonlinear macromodels with superior accuracy as compared to reduction algorithms based solely on Krylov subspace projections, while maintaining a relatively low model extraction cost.\",\"PeriodicalId\":167477,\"journal\":{\"name\":\"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/775832.775958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/775832.775958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A TBR-based trajectory piecewise-linear algorithm for generating accurate low-order models for nonlinear analog circuits and MEMS
In this paper we propose a method for generating reduced models for a class of nonlinear dynamical systems, based on truncated balanced realization (TBR) algorithm and a recently developed trajectory piecewise-linear (TPWL) model order reduction approach. We also present a scheme which uses both Krylov-based and TBR-based projections. Computational results, obtained for examples of nonlinear circuits and a micro-electro-mechanical system (MEMS), indicate that the proposed reduction scheme generates nonlinear macromodels with superior accuracy as compared to reduction algorithms based solely on Krylov subspace projections, while maintaining a relatively low model extraction cost.