Tom Valkeneers, D. Leen, Daniel Ashbrook, Raf Ramakers
{"title":"StackMold:快速原型的功能多材料对象与表面细节的选择水平","authors":"Tom Valkeneers, D. Leen, Daniel Ashbrook, Raf Ramakers","doi":"10.1145/3332165.3347915","DOIUrl":null,"url":null,"abstract":"We present StackMold, a DIY molding technique to prototype multi-material and multi-colored objects with embedded electronics. The key concept of our approach is a novel multi-stage mold buildup in which casting operations are interleaved with the assembly of the mold to form independent compartments for casting different materials. To build multi-stage molds, we contribute novel algorithms that computationally design and optimize the mold and casting procedure. By default, the multi-stage mold is fabricated in slices using a laser cutter. For regions that require more surface detail, a high-fidelity 3D-printed mold subsection can be incorporated. StackMold is an integrated end-to-end system, supporting all stages of the process: it provides a UI to specify material and detail regions of a 3D~object; it generates fabrication files for the molds; and it produces a step-by-step casting instruction manual.","PeriodicalId":431403,"journal":{"name":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"StackMold: Rapid Prototyping of Functional Multi-Material Objects with Selective Levels of Surface Details\",\"authors\":\"Tom Valkeneers, D. Leen, Daniel Ashbrook, Raf Ramakers\",\"doi\":\"10.1145/3332165.3347915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present StackMold, a DIY molding technique to prototype multi-material and multi-colored objects with embedded electronics. The key concept of our approach is a novel multi-stage mold buildup in which casting operations are interleaved with the assembly of the mold to form independent compartments for casting different materials. To build multi-stage molds, we contribute novel algorithms that computationally design and optimize the mold and casting procedure. By default, the multi-stage mold is fabricated in slices using a laser cutter. For regions that require more surface detail, a high-fidelity 3D-printed mold subsection can be incorporated. StackMold is an integrated end-to-end system, supporting all stages of the process: it provides a UI to specify material and detail regions of a 3D~object; it generates fabrication files for the molds; and it produces a step-by-step casting instruction manual.\",\"PeriodicalId\":431403,\"journal\":{\"name\":\"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3332165.3347915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3332165.3347915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
StackMold: Rapid Prototyping of Functional Multi-Material Objects with Selective Levels of Surface Details
We present StackMold, a DIY molding technique to prototype multi-material and multi-colored objects with embedded electronics. The key concept of our approach is a novel multi-stage mold buildup in which casting operations are interleaved with the assembly of the mold to form independent compartments for casting different materials. To build multi-stage molds, we contribute novel algorithms that computationally design and optimize the mold and casting procedure. By default, the multi-stage mold is fabricated in slices using a laser cutter. For regions that require more surface detail, a high-fidelity 3D-printed mold subsection can be incorporated. StackMold is an integrated end-to-end system, supporting all stages of the process: it provides a UI to specify material and detail regions of a 3D~object; it generates fabrication files for the molds; and it produces a step-by-step casting instruction manual.