大型决策模型

Weinan Zhang
{"title":"大型决策模型","authors":"Weinan Zhang","doi":"10.24963/ijcai.2023/808","DOIUrl":null,"url":null,"abstract":"Over recent decades, sequential decision-making tasks are mostly tackled with expert systems and reinforcement learning. However, these methods are still incapable of being generalizable enough to solve new tasks at a low cost. In this article, we discuss a novel paradigm that leverages Transformer-based sequence models to tackle decision-making tasks, named large decision models. Starting from offline reinforcement learning scenarios, early attempts demonstrate that sequential modeling methods can be applied to train an effective policy given sufficient expert trajectories. When the sequence model goes large, its generalization ability over a variety of tasks and fast adaptation to new tasks has been observed, which is highly potential to enable the agent to achieve artificial general intelligence for sequential decision-making in the near future.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Decision Models\",\"authors\":\"Weinan Zhang\",\"doi\":\"10.24963/ijcai.2023/808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over recent decades, sequential decision-making tasks are mostly tackled with expert systems and reinforcement learning. However, these methods are still incapable of being generalizable enough to solve new tasks at a low cost. In this article, we discuss a novel paradigm that leverages Transformer-based sequence models to tackle decision-making tasks, named large decision models. Starting from offline reinforcement learning scenarios, early attempts demonstrate that sequential modeling methods can be applied to train an effective policy given sufficient expert trajectories. When the sequence model goes large, its generalization ability over a variety of tasks and fast adaptation to new tasks has been observed, which is highly potential to enable the agent to achieve artificial general intelligence for sequential decision-making in the near future.\",\"PeriodicalId\":394530,\"journal\":{\"name\":\"International Joint Conference on Artificial Intelligence\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Joint Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2023/808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,顺序决策任务主要由专家系统和强化学习来解决。然而,这些方法仍然不能推广到足够低的成本来解决新任务。在本文中,我们讨论了一种新的范例,它利用基于transformer的序列模型来处理决策任务,称为大型决策模型。从离线强化学习场景开始,早期的尝试表明,给定足够的专家轨迹,顺序建模方法可以应用于训练有效的策略。随着序列模型规模的扩大,其对各种任务的泛化能力和对新任务的快速适应能力已经被观察到,这在不久的将来很有可能使智能体实现用于序列决策的人工通用智能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large Decision Models
Over recent decades, sequential decision-making tasks are mostly tackled with expert systems and reinforcement learning. However, these methods are still incapable of being generalizable enough to solve new tasks at a low cost. In this article, we discuss a novel paradigm that leverages Transformer-based sequence models to tackle decision-making tasks, named large decision models. Starting from offline reinforcement learning scenarios, early attempts demonstrate that sequential modeling methods can be applied to train an effective policy given sufficient expert trajectories. When the sequence model goes large, its generalization ability over a variety of tasks and fast adaptation to new tasks has been observed, which is highly potential to enable the agent to achieve artificial general intelligence for sequential decision-making in the near future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Formal Verification of Neuro-symbolic Multi-agent Systems RuleMatch: Matching Abstract Rules for Semi-supervised Learning of Human Standard Intelligence Tests Computing (1+epsilon)-Approximate Degeneracy in Sublinear Time AI and Decision Support for Sustainable Socio-Ecosystems Contrastive Learning and Reward Smoothing for Deep Portfolio Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1