{"title":"集中式和分布式可重构智能表面辅助NOMA","authors":"M. Kumar, S. Sharma, K. Deka, M. Thottappan","doi":"10.1109/NCC55593.2022.9806789","DOIUrl":null,"url":null,"abstract":"Reconfigurable intelligent surfaces (RIS) and non-orthogonal multiple access (NOMA) are promising technologies for next-generation wireless networks. RIS can reconfigure wire-less channels through passive reflecting elements, and NOMA enhances spectral efficiency (SE) and connectivity. In this paper, a base station (BS) transmits superimposed precoded symbols to near and far users via two different RIS deployment strategies. Initially, a single RIS is deployed at the BS and consists of N passive reflecting elements, referred to as centralized deployment of RIS-assisted NOMA (CDR-NOMA). On the other hand, two RISs having N/2 elements are kept at users and referred to as distributed deployment of RIS-assisted NOMA (DDR-NOMA). We have optimized the phase shift at RIS using the semidefinite relaxation (SDR) technique to maximize the received signal-to-noise ratio (SNR). Simulation results show that the bit error rate (BER) of the CDR-NOMA system is superior to the DDR-NOMA and a conventional RIS-assisted NOMA system. Further, the sum-rate of the proposed CDR-NOMA and DDR-NOMA is calculated and it is better than the orthogonal multiple access (OMA). Furthermore, impact of transmitting antennas and reflecting surfaces are studied on the sum-rate and BER performance in the CDR-NOMA and DDR-NOMA.","PeriodicalId":403870,"journal":{"name":"2022 National Conference on Communications (NCC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Centralized and Distributed Reconfigurable Intelligent Surfaces Assisted NOMA\",\"authors\":\"M. Kumar, S. Sharma, K. Deka, M. Thottappan\",\"doi\":\"10.1109/NCC55593.2022.9806789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconfigurable intelligent surfaces (RIS) and non-orthogonal multiple access (NOMA) are promising technologies for next-generation wireless networks. RIS can reconfigure wire-less channels through passive reflecting elements, and NOMA enhances spectral efficiency (SE) and connectivity. In this paper, a base station (BS) transmits superimposed precoded symbols to near and far users via two different RIS deployment strategies. Initially, a single RIS is deployed at the BS and consists of N passive reflecting elements, referred to as centralized deployment of RIS-assisted NOMA (CDR-NOMA). On the other hand, two RISs having N/2 elements are kept at users and referred to as distributed deployment of RIS-assisted NOMA (DDR-NOMA). We have optimized the phase shift at RIS using the semidefinite relaxation (SDR) technique to maximize the received signal-to-noise ratio (SNR). Simulation results show that the bit error rate (BER) of the CDR-NOMA system is superior to the DDR-NOMA and a conventional RIS-assisted NOMA system. Further, the sum-rate of the proposed CDR-NOMA and DDR-NOMA is calculated and it is better than the orthogonal multiple access (OMA). Furthermore, impact of transmitting antennas and reflecting surfaces are studied on the sum-rate and BER performance in the CDR-NOMA and DDR-NOMA.\",\"PeriodicalId\":403870,\"journal\":{\"name\":\"2022 National Conference on Communications (NCC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC55593.2022.9806789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC55593.2022.9806789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Centralized and Distributed Reconfigurable Intelligent Surfaces Assisted NOMA
Reconfigurable intelligent surfaces (RIS) and non-orthogonal multiple access (NOMA) are promising technologies for next-generation wireless networks. RIS can reconfigure wire-less channels through passive reflecting elements, and NOMA enhances spectral efficiency (SE) and connectivity. In this paper, a base station (BS) transmits superimposed precoded symbols to near and far users via two different RIS deployment strategies. Initially, a single RIS is deployed at the BS and consists of N passive reflecting elements, referred to as centralized deployment of RIS-assisted NOMA (CDR-NOMA). On the other hand, two RISs having N/2 elements are kept at users and referred to as distributed deployment of RIS-assisted NOMA (DDR-NOMA). We have optimized the phase shift at RIS using the semidefinite relaxation (SDR) technique to maximize the received signal-to-noise ratio (SNR). Simulation results show that the bit error rate (BER) of the CDR-NOMA system is superior to the DDR-NOMA and a conventional RIS-assisted NOMA system. Further, the sum-rate of the proposed CDR-NOMA and DDR-NOMA is calculated and it is better than the orthogonal multiple access (OMA). Furthermore, impact of transmitting antennas and reflecting surfaces are studied on the sum-rate and BER performance in the CDR-NOMA and DDR-NOMA.