BBN连续语音识别系统

Y. Chow, M. O. Dunham, O. Kimball, M. Krasner, G. Kubala, J. Makhoul, P. Price, Salim Roukos, R. Schwartz
{"title":"BBN连续语音识别系统","authors":"Y. Chow, M. O. Dunham, O. Kimball, M. Krasner, G. Kubala, J. Makhoul, P. Price, Salim Roukos, R. Schwartz","doi":"10.1109/ICASSP.1987.1169748","DOIUrl":null,"url":null,"abstract":"In this paper, we describe BYBLOS, the BBN continuous speech recognition system. The system, designed for large vocabulary applications, integrates acoustic, phonetic, lexical, and linguistic knowledge sources to achieve high recognition performance. The basic approach, as described in previous papers [1, 2], makes extensive use of robust context-dependent models of phonetic coarticulation using Hidden Markov Models (HMM). We describe the components of the BYBLOS system, including: signal processing frontend, dictionary, phonetic model training system, word model generator, grammar and decoder. In recognition experiments, we demonstrate consistently high word recognition performance on continuous speech across: speakers, task domains, and grammars of varying complexity. In speaker-dependent mode, where 15 minutes of speech is required for training to a speaker, 98.5% word accuracy has been achieved in continuous speech for a 350-word task, using grammars with perplexity ranging from 30 to 60. With only 15 seconds of training speech we demonstrate performance of 97% using a grammar.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"176","resultStr":"{\"title\":\"BYBLOS: The BBN continuous speech recognition system\",\"authors\":\"Y. Chow, M. O. Dunham, O. Kimball, M. Krasner, G. Kubala, J. Makhoul, P. Price, Salim Roukos, R. Schwartz\",\"doi\":\"10.1109/ICASSP.1987.1169748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe BYBLOS, the BBN continuous speech recognition system. The system, designed for large vocabulary applications, integrates acoustic, phonetic, lexical, and linguistic knowledge sources to achieve high recognition performance. The basic approach, as described in previous papers [1, 2], makes extensive use of robust context-dependent models of phonetic coarticulation using Hidden Markov Models (HMM). We describe the components of the BYBLOS system, including: signal processing frontend, dictionary, phonetic model training system, word model generator, grammar and decoder. In recognition experiments, we demonstrate consistently high word recognition performance on continuous speech across: speakers, task domains, and grammars of varying complexity. In speaker-dependent mode, where 15 minutes of speech is required for training to a speaker, 98.5% word accuracy has been achieved in continuous speech for a 350-word task, using grammars with perplexity ranging from 30 to 60. With only 15 seconds of training speech we demonstrate performance of 97% using a grammar.\",\"PeriodicalId\":140810,\"journal\":{\"name\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"176\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1987.1169748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 176

摘要

本文介绍了BBN连续语音识别系统BYBLOS。该系统专为大词汇量应用而设计,集成了声学、语音、词汇和语言知识来源,以实现高识别性能。如之前的论文[1,2]所述,基本方法广泛使用隐马尔可夫模型(HMM)的语音协同发音的鲁棒上下文相关模型。介绍了BYBLOS系统的组成部分,包括:信号处理前端、字典、语音模型训练系统、词模型生成器、语法和解码器。在识别实验中,我们在不同复杂程度的说话者、任务域和语法的连续语音中展示了一致的高单词识别性能。在说话人依赖模式下,训练一个说话人需要15分钟的讲话时间,在连续讲话中,使用困惑度从30到60的语法,在350个单词的任务中,单词准确率达到了98.5%。只需15秒的训练演讲,我们就能证明使用语法的表现达到97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BYBLOS: The BBN continuous speech recognition system
In this paper, we describe BYBLOS, the BBN continuous speech recognition system. The system, designed for large vocabulary applications, integrates acoustic, phonetic, lexical, and linguistic knowledge sources to achieve high recognition performance. The basic approach, as described in previous papers [1, 2], makes extensive use of robust context-dependent models of phonetic coarticulation using Hidden Markov Models (HMM). We describe the components of the BYBLOS system, including: signal processing frontend, dictionary, phonetic model training system, word model generator, grammar and decoder. In recognition experiments, we demonstrate consistently high word recognition performance on continuous speech across: speakers, task domains, and grammars of varying complexity. In speaker-dependent mode, where 15 minutes of speech is required for training to a speaker, 98.5% word accuracy has been achieved in continuous speech for a 350-word task, using grammars with perplexity ranging from 30 to 60. With only 15 seconds of training speech we demonstrate performance of 97% using a grammar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high resolution data-adaptive time-frequency representation A fast prediction-error detector for estimating sparse-spike sequences Some applications of mathematical morphology to range imagery Parameter estimation using the autocorrelation of the discrete Fourier transform Array signal processing with interconnected Neuron-like elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1